Axiomatic Set Theory, with a Historical Introduction 🔍
Paul Bernays
North-Holland, NOTE: EX-LIBRARY COPY, 1958
英语 [en] · DJVU · 1.4MB · 1958 · 📘 非小说类图书 · 🚀/lgli/lgrs · Save
描述
Cover
Title Page
Copyright Page
Preface
Contents
Part I: A Historical Introduction [Abraham A. Fraenkel]
Chapter 1. Introductory Remarks
Chapter 2. Zermelo's System. Equality and Extensionality
Chapter 3. ''Consecutive'' Axioms of ''General'' Set Theory
Chapter 4. The Axiom of Choice
Chapter 5. Axioms of Infinity and of Restriction
Chapter 6. Development of Set-Theory from the Axioms of Z
Chapter 7. Remarks on the Axiom Systems of von Neumann, Bernays, Gödel
Part II: Axiomatic Set Theory [Paul Bernays]
Introduction
Chapter 1. The Frame of Logic and Class Theory
1.1 Predicate Calculus; Class Terms and Descriptions, Explicit Definitions
1.2 Equality and Extensionality. Application to Descriptions
1.3 Class Formalism. Class Operations
1.4 Functionality and Mappings
Chapter 2. The Start of General Set Theory
2.1 The Axioms of General Set Theory
2.2 Aussonderungstheorem. Intersection
2.3 Sum Theorem. Theorem of Replacement
2.4 Functional Sets. One-to-One Correspondences
Chapter 3. Ordinals; Natural Numbers; Finite Sets
3.1 Fundamentals of the Theory of Ordinals
3.2 Existential Statements on Ordinals. Limit Numbers
3.3 Fundaments of Number Theory
3.4 Iteration. Primitive Recursion
3.5 Finite Sets and Classes
Chapter 4. Transfinite Recursion
4.1 The General Recursion Theorem
4.2 The Schema of Transfinite Recursion
4.3 Generated Numeration
Chapter 5. Power; Order; Wellorder
5.1 Comparison of Powers
5.2 Order and Partial Order
5.3 Wellorder
Chapter 6. The Completing Axioms
6.1 The Potency Axiom
6.2 The Axiom of Choice
6.3 The Numeration Theorem. First Concepts of Cardinal Arithmetic
6.4 Zorn's Lemma and Related Principles
6.5 Axiom of Infinity. Denumerability
Chapter 7. Analysis; Cardinal Arithmetic; Abstract Theories
7.1 Theory of Real Numbers
7.2 Some Topics of Ordinal Arithmetic
7.3 Cardinal Operations
7.4 Formal Laws on Cardinals
7.5 Abstract Theories
Chapter 8. Further Strengthening of the Axiom System
8.1 A Strengthening of the Axiom of Choice
8.2 The Fundierungsaxiom
8.3 A One-to-One Correspondence between the Class of Ordinals and the Class of All Sets
Index to Authors of Part I
Index of Symbols to Part II
Predicates
Functors and Operators
Primitive Symbols
Index of Matters to Part II
List of Axioms to Part II
Bibliography to Part I and II
Back Cover
Title Page
Copyright Page
Preface
Contents
Part I: A Historical Introduction [Abraham A. Fraenkel]
Chapter 1. Introductory Remarks
Chapter 2. Zermelo's System. Equality and Extensionality
Chapter 3. ''Consecutive'' Axioms of ''General'' Set Theory
Chapter 4. The Axiom of Choice
Chapter 5. Axioms of Infinity and of Restriction
Chapter 6. Development of Set-Theory from the Axioms of Z
Chapter 7. Remarks on the Axiom Systems of von Neumann, Bernays, Gödel
Part II: Axiomatic Set Theory [Paul Bernays]
Introduction
Chapter 1. The Frame of Logic and Class Theory
1.1 Predicate Calculus; Class Terms and Descriptions, Explicit Definitions
1.2 Equality and Extensionality. Application to Descriptions
1.3 Class Formalism. Class Operations
1.4 Functionality and Mappings
Chapter 2. The Start of General Set Theory
2.1 The Axioms of General Set Theory
2.2 Aussonderungstheorem. Intersection
2.3 Sum Theorem. Theorem of Replacement
2.4 Functional Sets. One-to-One Correspondences
Chapter 3. Ordinals; Natural Numbers; Finite Sets
3.1 Fundamentals of the Theory of Ordinals
3.2 Existential Statements on Ordinals. Limit Numbers
3.3 Fundaments of Number Theory
3.4 Iteration. Primitive Recursion
3.5 Finite Sets and Classes
Chapter 4. Transfinite Recursion
4.1 The General Recursion Theorem
4.2 The Schema of Transfinite Recursion
4.3 Generated Numeration
Chapter 5. Power; Order; Wellorder
5.1 Comparison of Powers
5.2 Order and Partial Order
5.3 Wellorder
Chapter 6. The Completing Axioms
6.1 The Potency Axiom
6.2 The Axiom of Choice
6.3 The Numeration Theorem. First Concepts of Cardinal Arithmetic
6.4 Zorn's Lemma and Related Principles
6.5 Axiom of Infinity. Denumerability
Chapter 7. Analysis; Cardinal Arithmetic; Abstract Theories
7.1 Theory of Real Numbers
7.2 Some Topics of Ordinal Arithmetic
7.3 Cardinal Operations
7.4 Formal Laws on Cardinals
7.5 Abstract Theories
Chapter 8. Further Strengthening of the Axiom System
8.1 A Strengthening of the Axiom of Choice
8.2 The Fundierungsaxiom
8.3 A One-to-One Correspondence between the Class of Ordinals and the Class of All Sets
Index to Authors of Part I
Index of Symbols to Part II
Predicates
Functors and Operators
Primitive Symbols
Index of Matters to Part II
List of Axioms to Part II
Bibliography to Part I and II
Back Cover
备用文件名
lgrsnf/Bernays P. Axiomatic set theory (SLFM021, NH, 1958)(ASIN B001SIMST4)(K)(T)(O)(236s)_MAml_.djvu
开源日期
2024-07-27
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.