Java Island, Indonesia 🔍
Larissa Dsikowitzky; Ario Damar; Sebastian C.A. Ferse; Hari E. Irianto; Tim C. Jennerjahn; Martin C. Lukas; Inga Nordhaus; Thomas Pohlmann; Jan Schwarzbauer; Ketut Sugama; Bambang Sumiono
World Seas: an Environmental Evaluation, 2019
爱沙尼亚语 [et] · PDF · 13.5MB · 2019 · 🤨 其他 · nexusstc/scihub · Save
描述
The JS is a shallow shelf sea, located between Kalimantan Strait in the north, Java in the south, Sumatra in the west, and the Flores Sea in the east. It is entirely located on the Sunda Shelf and the sea bottom is almost flat with an average depth of only 46 m. It is connected to the Indian Ocean by the Sunda Strait in the west and Bali Strait in the east, both straits being shallow and relatively narrow with limited water exchange.
Being shallow, its temperature and salinity is strongly affected by the monsoon (Kida & Richards, 2009;Napitu, Gordon, & Pujiana, 2015). In winter, the sea surface temperature (SST) is around 29.0°C and the sea surface salinity (SSS) is between 31.3 and 32.0, whereas in summer, the SST only reaches 28.5°C (Qu, Du, Strachan, Meyers, & Slingo, 2005) and SSS shows a strong west-east increase from 32.0 to 34.0 (Wyrtki, 1961), indicating the intrusion of more oceanic water during the SE monsoon.
The sea surface height (SSH) in the JS is directly related to monsoon activity. In winter, SSH in the southern South China Sea and in adjacent western JS increases due to the blocking effect, caused by the south-eastward flow across the very shallow Sunda Shelf. In summer, the SE monsoon pushes the water to the northern South China Sea and the resulting outflow through the Kalimantan Straits leads to a falling SSH. The amplitude of this seasonal signal is around 20 cm (Tkalich, Vethamony, Luu, & Babu, 2013). Superimposed to this is a geostrophic adjustment, leading to a northward SSH gradient in winter and a southward one in summer.
The JS is influenced by semidiurnal tides from the Indian Ocean and a diurnal tide from the Pacific, which intrudes through the Makassar Strait and Molucca Sea (Wyrtki, 1961). Due to the shallowness of the JS, both tidal waves are relatively slow, needing >1 day to traverse it. The M 2 tidal amplitude is not >30 cm while the amplitude of the K 1 tide is significantly larger at over 60 cm close to the western and eastern boundaries, and <10 cm in the central JS (Ding, Bao, Yu, & Kuang, 2012). Tidal currents are approximately 0.5 m s -1 (Ray, Egbert, & Erofeeva, 2005), causing a significant anticlockwise rotation in the western Java Sea (Ding et al., 2012).
Currents in the JS show a pronounced seasonality (Gordon, 2005). In winter, water enters from the South China Sea through the Kalimantan Strait, moving eastward to the Flores Sea. In summer, currents are reversed exhibiting a weaker, westward flow. These general flow patterns do not show a strong spatial variability, though in bays close to the coast (like Jakarta Bay), minor countercurrents occur.
Being shallow, its temperature and salinity is strongly affected by the monsoon (Kida & Richards, 2009;Napitu, Gordon, & Pujiana, 2015). In winter, the sea surface temperature (SST) is around 29.0°C and the sea surface salinity (SSS) is between 31.3 and 32.0, whereas in summer, the SST only reaches 28.5°C (Qu, Du, Strachan, Meyers, & Slingo, 2005) and SSS shows a strong west-east increase from 32.0 to 34.0 (Wyrtki, 1961), indicating the intrusion of more oceanic water during the SE monsoon.
The sea surface height (SSH) in the JS is directly related to monsoon activity. In winter, SSH in the southern South China Sea and in adjacent western JS increases due to the blocking effect, caused by the south-eastward flow across the very shallow Sunda Shelf. In summer, the SE monsoon pushes the water to the northern South China Sea and the resulting outflow through the Kalimantan Straits leads to a falling SSH. The amplitude of this seasonal signal is around 20 cm (Tkalich, Vethamony, Luu, & Babu, 2013). Superimposed to this is a geostrophic adjustment, leading to a northward SSH gradient in winter and a southward one in summer.
The JS is influenced by semidiurnal tides from the Indian Ocean and a diurnal tide from the Pacific, which intrudes through the Makassar Strait and Molucca Sea (Wyrtki, 1961). Due to the shallowness of the JS, both tidal waves are relatively slow, needing >1 day to traverse it. The M 2 tidal amplitude is not >30 cm while the amplitude of the K 1 tide is significantly larger at over 60 cm close to the western and eastern boundaries, and <10 cm in the central JS (Ding, Bao, Yu, & Kuang, 2012). Tidal currents are approximately 0.5 m s -1 (Ray, Egbert, & Erofeeva, 2005), causing a significant anticlockwise rotation in the western Java Sea (Ding et al., 2012).
Currents in the JS show a pronounced seasonality (Gordon, 2005). In winter, water enters from the South China Sea through the Kalimantan Strait, moving eastward to the Flores Sea. In summer, currents are reversed exhibiting a weaker, westward flow. These general flow patterns do not show a strong spatial variability, though in bays close to the coast (like Jakarta Bay), minor countercurrents occur.
备用文件名
scihub/10.1016/b978-0-08-100853-9.00029-4.pdf
元数据中的注释
{"container_title":"World Seas: an Environmental Evaluation","content":{"parsed_at":1713132900,"parser":{"name":"textparser","version":"0.1.125"},"source":{"name":"grobid","version":"0.8.0"}},"first_page":459,"last_page":490}
元数据中的注释
Referenced by: doi:10.1016/j.ecoleng.2004.10.003 doi:10.1016/j.gloplacha.2006.04.001 doi:10.1126/science.1109454 doi:10.1002/joc.950 doi:10.1016/j.ocecoaman.2015.08.003 doi:10.1038/ngeo901 doi:10.1073/pnas.1510272113 doi:10.1371/journal.pone.0162122 doi:10.1111/j.1466-8238.2010.00584.x doi:10.1016/s0025-326x(98)00047-2 doi:10.1007/s10531-004-4692-y doi:10.1007/s002440010075 doi:10.1093/icesjms/fsp011 doi:10.5670/oceanog.2005.05 doi:10.1016/j.marpolbul.2016.05.008 doi:10.1371/journal.pone.0138271 doi:10.1126/science.1260352 doi:10.1007/bf02472006 doi:10.5670/oceanog.2005.13 doi:10.1016/s0025-326x(96)00141-5 doi:10.1016/j.ecss.2011.01.010 doi:10.1016/j.marpolbul.2016.06.003 doi:10.1016/j.landusepol.2016.03.010 doi:10.1111/geb.12449 doi:10.1371/journal.pone.0050074 doi:10.1029/2000gl011844 doi:10.1007/s10113-016-1058-4 doi:10.1023/a:1011144602064 doi:10.1007/s10113-008-0072-6 doi:10.5194/os-9-293-2013 doi:10.1016/j.dsr2.2003.10.003 doi:10.1029/2005gc001009 doi:10.1016/j.marpolbul.2016.05.015 doi:10.1016/j.epsl.2007.03.044 doi:10.1016/j.rse.2012.10.015 doi:10.1016/j.habitatint.2007.06.002 doi:10.1007/s00254-007-1169-9 doi:10.15578/ifrj.16.2.2010.69-78 doi:10.1002/etc.5620211015 doi:10.1016/j.jhazmat.2012.03.023 doi:10.5670/oceanog.2005.01 doi:10.1016/j.geomorph.2006.06.040 doi:10.1080/0042098975718 doi:10.1007/s10661-007-9661-y doi:10.1016/j.watres.2004.02.009 doi:10.1016/j.marpolbul.2016.02.019 doi:10.1016/j.marpol.2012.12.022 doi:10.1007/s00338-013-1025-1 doi:10.1007/bf00265007 doi:10.1080/089207502753504698 doi:10.1007/s10113-009-0097-5 doi:10.1016/s0025-326x(99)00226-x doi:10.1016/j.envint.2007.02.009 doi:10.1016/s0025-326x(01)00214-4 doi:10.1016/j.ecss.2004.02.008 doi:10.1029/1999gl002320 doi:10.14714/cp78.1218 doi:10.1007/s10113-005-0009-2 doi:10.1016/j.geoforum.2014.06.010 doi:10.1007/s11069-010-9599-1 doi:10.1016/j.ocecoaman.2015.09.004 doi:10.1007/s10113-009-0089-5 doi:10.1038/ngeo2188 doi:10.1016/j.marpol.2014.09.026 doi:10.1007/s10236-011-0518-0 doi:10.1016/j.marpolbul.2017.06.046 doi:10.1016/j.ecss.2013.04.007 doi:10.1016/0964-5691(94)90037-x doi:10.1016/j.marpolbul.2016.01.034 doi:10.1007/s00436-006-0391-9 doi:10.1007/s12665-009-0227-x doi:10.1021/es070380p doi:10.1016/j.marpolbul.2010.05.011 doi:10.1016/s0964-5691(01)00054-0 doi:10.1007/s00027-008-8077-2 doi:10.5670/oceanog.2005.07 doi:10.1029/2005gl024965 doi:10.1029/2008jc005150 doi:10.1016/j.marpolbul.2004.11.041 doi:10.3354/meps10678 doi:10.1016/j.seares.2011.03.006 doi:10.1016/j.marpolbul.2016.04.042 doi:10.1016/j.earscirev.2012.04.005 doi:10.1016/j.ocecoaman.2012.04.015 doi:10.5670/oceanog.2005.12 doi:10.1007/s11069-007-9144-z doi:10.1175/jcli-d-14-00758.1 doi:10.1016/j.proenv.2015.01.032 doi:10.1007/s10669-007-9134-4 doi:10.1002/aqc.2359 doi:10.1007/978-90-481-3002-3_12 doi:10.1007/s10872-013-0192-6 doi:10.1016/j.dsr.2009.12.002 doi:10.1016/j.geomorph.2006.06.041 doi:10.1007/s10113-008-0074-4 doi:10.2174/1874252101408010002 doi:10.1007/s00468-014-1021-2 doi:10.1016/j.ecss.2011.10.002 doi:10.1016/s1474-8177(07)07013-1 doi:10.1007/s101130000014 doi:10.1007/s00244-011-9747-y
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
- Sci-Hub: 10.1016/b978-0-08-100853-9.00029-4
- Nexus/STC (Nexus/STC 文件下载可能不可靠)
- IPFS
- Bulk torrents not yet available for this file. If you have this file, help out by uploading.
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.