nexusstc/Geometric Mechanics - Part II: Rotating, Translating And Rolling/0600f59973a86862524024388ed4df22.pdf
Geometric Mechanics - Part Ii: Rotating, Translating And Rolling (2Nd Edition) 🔍
Darryl D. Holm
Imperial College Press ; Distributed by World Scientific, 2nd ed, London, Hackensack, NJ, ©2011
英语 [en] · PDF · 12.9MB · 2011 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
See also GEOMETRIC MECHANICS -- Part I: Dynamics and Symmetry (2nd Edition) This textbook introduces modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. In particular, it explains the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The book uses familiar concrete examples to explain variational calculus on tangent spaces of Lie groups. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. Many worked examples of adjoint and coadjoint actions of Lie groups on smooth manifolds have also been added and the enhanced coursework examples have been expanded. The second edition is ideal for classroom use, student projects and self-study.
备用文件名
lgli/Geometric Mechanics 2-Rotating, Translating And Rolling(2e,2011,406p)D.D.Holm_1848167784.pdf
备用文件名
lgrsnf/Geometric Mechanics 2-Rotating, Translating And Rolling(2e,2011,406p)D.D.Holm_1848167784.pdf
备用文件名
zlib/Engineering/Darryl D Holm/Geometric Mechanics - Part II: Rotating, Translating And Rolling_17046702.pdf
备选标题
Geometric mechanics. 2, Rotating, translating and rolling
备选作者
Holm, Darryl D
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
2nd ed., 2011-10-31
元数据中的注释
lg3092554
元数据中的注释
{"edition":"2","isbns":["1848167784","9781848167780"],"last_page":410,"publisher":"Icp"}
备用描述
Contents
Preface
1. gALILEO
1.1 Principle of Galilean relativity
1.2 Galilean transformations
1.2.1 Admissible force laws for an N-particle system
1.3 Subgroups of the Galilean transformations
1.3.1 Matrix representation of SE(3)
1.4 Lie group actions of SE(3)
1.5 Lie group actions of G(3)
1.5.1 Matrix representation of G(3)
1.6 Lie algebra of SE(3)
1.7 Lie algebra of G(3)
2. Newton, Lagrange, Hamilton and the Rigid Body
2.1 Newton
2.1.1 Newtonian form of free rigid rotation
2.1.2 Newtonian form of rigid-body motion
2.2 Lagrange
2.2.1 The principle of stationary action
2.3 Noether's theorem
2.3.1 Lie symmetries and conservation laws
2.3.2 Infinitesimal transformations of a Lie group
2.4 Lagrangian form of rigid-body motion
2.4.1 Hamilton-Pontryagin constrained variations
2.4.2 Manakov's formulation of the SO(n) rigid body
2.4.3 Matrix Euler-Poincare equations
2.4.4 An isospectral eigenvalue problem for the SO(n) rigid body
2.4.5 Manakov's integration of the SO(n) rigid body
2.5 Hamilton
2.5.1 Hamiltonian form of rigid-body motion
2.5.2 Lie-Poisson Hamiltonian rigid-body dynamics
2.5.3 Lie-Poisson bracket
2.5.4 Nambu's R3 Poisson bracket
2.5.5 Clebsch variational principle for the rigid body
2.5.6 Rotating motion with potential energy
3. Quaternions
3.1 Operating with quaternions
3.1.1 Multiplying quaternions using Pauli matrices
3.1.2 Quaternionic conjugate
3.1.3 Decomposition of three-vectors
3.1.4 Alignment dynamics for Newton's second law
3.1.5 Quaternionic dynamics of Kepler's problem
3.2 Quaternionic conjugation
3.2.1 Cayley-Klein parameters
3.2.2 Pure quaternions, Pauli matrices and SU(2)
3.2.3 Tilde map: R3 ≅ su(2) ≅ so(3)
3.2.4 Dual of the tilde map: R3* ≅ su(2)* ≅ so(3)*
3.2.5 Pauli matrices and Poincare's sphere C2→S2
3.2.6 Poincare's sphere and Hopf's fibration
3.2.7 Coquaternions
4. Adjoint and Coadjoint Actions
4.1 Cayley-Klein dynamics for the rigid body
4.1.1 Cayley-Klein parameters, rigid-body dynamics
4.1.2 Body angular frequency
4.1.3 Cayley-Klein parameters
4.2 Actions of quaternions, Lie groups and Lie algebras
4.2.1 AD, Ad, ad, Ad* and ad* actions of quaternions
4.2.2 AD, Ad, and ad for Lie algebras and groups
4.3 Example: The Heisenberg Lie group
4.3.1 Definitions for the Heisenberg group
4.3.2 Adjoint actions: AD, Ad and ad
4.3.3 Coadjoint actions: Ad* and ad*
4.3.4 Coadjoint motion and harmonic oscillations
5. The Special Orthogonal Group SO(3)
5.1 Adjoint and coadjoint actions of SO(3)
5.1.1 Ad and ad operations for the hat map
5.1.2 AD, Ad and ad actions of SO(3)
5.1.3 Dual Lie algebra isomorphism ˇ : so(3)*→R3
6. Adjoint and Coadjoint Semidirect-Product Group Actions
6.1 Special Euclidean group SE(3)
6.2 Adjoint operations for SE(3)
6.3 Adjoint actions of SE(3)'s Lie algebra
6.3.1 The ad action of se(3) on itself
6.3.2 The ad* action of se(3) on its dual se(3)*
6.3.3 Left versus right
6.4 Special Euclidean group SE(2)
6.5 Semidirect-product group SL(2, R)SR2
6.5.1 Definitions for SL(2, R)SR2
6.5.2 AD, Ad, and ad actions
6.5.3 Ad* and ad* actions
6.5.4 Coadjoint motion relation
6.6 Galilean group
6.6.1 Definitions for G(3)
6.6.2 AD, Ad, and ad actions of G(3)
6.7 Iterated semidirect products
7. Euler-Poincare and Lie-Poisson Equations on SE(3)
7.1 Euler-Poincare equations for left-invariant Lagrangians under SE(3)
7.1.1 Legendre transform from se(3) to se(3)*
7.1.2 Lie-Poisson bracket on se(3)*
7.1.3 Coadjoint motion on se(3)*
7.2 Kirchhoff equations on se(3)*
7.2.1 Looks can be deceiving: The heavy top
8. Heavy-Top Equations
8.1 Introduction and definitions
8.2 Heavy-top action principle
8.3 Lie-Poisson brackets
8.3.1 Lie-Poisson brackets and momentum maps
8.3.2 Lie-Poisson brackets for the heavy top
8.4 Clebsch action principle
8.5 Kaluza-Klein construction
9. The Euler-Poincare Theorem
9.1 Action principles on Lie algebras
9.2 Hamilton-Pontryagin principle
9.3 Clebsch approach to Euler-Poincare
9.3.1 Defining the Lie derivative
9.3.2 Clebsch Euler-Poincare principle
9.4 Lie-Poisson Hamiltonian formulation
9.4.1 Cotangent-lift momentum maps
10. Lie-Poisson Hamiltonian Form of a Continuum Spin Chain
10.1 Formulating continuum spin chain equations
10.2 Euler-Poincare equations
10.3 Hamiltonian formulation
11. Momentum Maps
11.1 The momentum map
11.2 Cotangent lift
11.3 Examples of momentum maps
12. Round, Rolling Rigid Bodies
12.1 Introduction
12.1.1 Holonomic versus nonholonomic
12.1.2 The Chaplygin ball
12.2 Nonholonomic Hamilton-Pontryagin variational principle
12.2.1 HP principle for the Chaplygin ball
12.2.2 Circular disk rocking in a vertical plane
12.2.3 Euler's rolling and spinning disk
12.3 Nonholonomic Euler-Poincare reduction
12.3.1 Semidirect-product structure
12.3.2 Euler-Poincare theorem
12.3.3 Constrained reduced Lagrangian
A. Geometrical Structure of Classical Mechanics
A.1 Manifolds
A.2 Motion: Tangent vectors and flows
A.2.1 Vector fields, integral curves and flows
A.2.2 Differentials of functions: The cotangent bundle
A.3 Tangent and cotangent lifts
A.3.1 Summary of derivatives on manifolds
B. Lie Groups and Lie Algebras
B.1 Matrix Lie groups
B.2 Defining matrix Lie algebras
B.3 Examples of matrix Lie groups
B.4 Lie group actions
B.5 Tangent and cotangent lift actions
B.6 Jacobi-Lie bracket
B.7 Lie derivative and Jacobi-Lie bracket
B.7.1 Lie derivative of a vector field
B.7.2 Vector fields in ideal fluid dynamics
C. Enhanced Coursework
C.1 Variations on rigid-body dynamics
C.1.1 Two times
C.1.2 Rotations in complex space
C.1.3 Rotations in four dimensions: SO(4)
C.2 C3 oscillators
C.3 Momentum maps for GL(n, R)
C.4 Motion on the symplectic Lie group Sp(2)
C.5 Two coupled rigid bodies
D. Poincare's 1901 Paper
Bibliography
A
B
C
D・E
F・G
H
I・J・K
L
M
N・O
P・R
S
V・W
Z
Index
Preface
1. gALILEO
1.1 Principle of Galilean relativity
1.2 Galilean transformations
1.2.1 Admissible force laws for an N-particle system
1.3 Subgroups of the Galilean transformations
1.3.1 Matrix representation of SE(3)
1.4 Lie group actions of SE(3)
1.5 Lie group actions of G(3)
1.5.1 Matrix representation of G(3)
1.6 Lie algebra of SE(3)
1.7 Lie algebra of G(3)
2. Newton, Lagrange, Hamilton and the Rigid Body
2.1 Newton
2.1.1 Newtonian form of free rigid rotation
2.1.2 Newtonian form of rigid-body motion
2.2 Lagrange
2.2.1 The principle of stationary action
2.3 Noether's theorem
2.3.1 Lie symmetries and conservation laws
2.3.2 Infinitesimal transformations of a Lie group
2.4 Lagrangian form of rigid-body motion
2.4.1 Hamilton-Pontryagin constrained variations
2.4.2 Manakov's formulation of the SO(n) rigid body
2.4.3 Matrix Euler-Poincare equations
2.4.4 An isospectral eigenvalue problem for the SO(n) rigid body
2.4.5 Manakov's integration of the SO(n) rigid body
2.5 Hamilton
2.5.1 Hamiltonian form of rigid-body motion
2.5.2 Lie-Poisson Hamiltonian rigid-body dynamics
2.5.3 Lie-Poisson bracket
2.5.4 Nambu's R3 Poisson bracket
2.5.5 Clebsch variational principle for the rigid body
2.5.6 Rotating motion with potential energy
3. Quaternions
3.1 Operating with quaternions
3.1.1 Multiplying quaternions using Pauli matrices
3.1.2 Quaternionic conjugate
3.1.3 Decomposition of three-vectors
3.1.4 Alignment dynamics for Newton's second law
3.1.5 Quaternionic dynamics of Kepler's problem
3.2 Quaternionic conjugation
3.2.1 Cayley-Klein parameters
3.2.2 Pure quaternions, Pauli matrices and SU(2)
3.2.3 Tilde map: R3 ≅ su(2) ≅ so(3)
3.2.4 Dual of the tilde map: R3* ≅ su(2)* ≅ so(3)*
3.2.5 Pauli matrices and Poincare's sphere C2→S2
3.2.6 Poincare's sphere and Hopf's fibration
3.2.7 Coquaternions
4. Adjoint and Coadjoint Actions
4.1 Cayley-Klein dynamics for the rigid body
4.1.1 Cayley-Klein parameters, rigid-body dynamics
4.1.2 Body angular frequency
4.1.3 Cayley-Klein parameters
4.2 Actions of quaternions, Lie groups and Lie algebras
4.2.1 AD, Ad, ad, Ad* and ad* actions of quaternions
4.2.2 AD, Ad, and ad for Lie algebras and groups
4.3 Example: The Heisenberg Lie group
4.3.1 Definitions for the Heisenberg group
4.3.2 Adjoint actions: AD, Ad and ad
4.3.3 Coadjoint actions: Ad* and ad*
4.3.4 Coadjoint motion and harmonic oscillations
5. The Special Orthogonal Group SO(3)
5.1 Adjoint and coadjoint actions of SO(3)
5.1.1 Ad and ad operations for the hat map
5.1.2 AD, Ad and ad actions of SO(3)
5.1.3 Dual Lie algebra isomorphism ˇ : so(3)*→R3
6. Adjoint and Coadjoint Semidirect-Product Group Actions
6.1 Special Euclidean group SE(3)
6.2 Adjoint operations for SE(3)
6.3 Adjoint actions of SE(3)'s Lie algebra
6.3.1 The ad action of se(3) on itself
6.3.2 The ad* action of se(3) on its dual se(3)*
6.3.3 Left versus right
6.4 Special Euclidean group SE(2)
6.5 Semidirect-product group SL(2, R)SR2
6.5.1 Definitions for SL(2, R)SR2
6.5.2 AD, Ad, and ad actions
6.5.3 Ad* and ad* actions
6.5.4 Coadjoint motion relation
6.6 Galilean group
6.6.1 Definitions for G(3)
6.6.2 AD, Ad, and ad actions of G(3)
6.7 Iterated semidirect products
7. Euler-Poincare and Lie-Poisson Equations on SE(3)
7.1 Euler-Poincare equations for left-invariant Lagrangians under SE(3)
7.1.1 Legendre transform from se(3) to se(3)*
7.1.2 Lie-Poisson bracket on se(3)*
7.1.3 Coadjoint motion on se(3)*
7.2 Kirchhoff equations on se(3)*
7.2.1 Looks can be deceiving: The heavy top
8. Heavy-Top Equations
8.1 Introduction and definitions
8.2 Heavy-top action principle
8.3 Lie-Poisson brackets
8.3.1 Lie-Poisson brackets and momentum maps
8.3.2 Lie-Poisson brackets for the heavy top
8.4 Clebsch action principle
8.5 Kaluza-Klein construction
9. The Euler-Poincare Theorem
9.1 Action principles on Lie algebras
9.2 Hamilton-Pontryagin principle
9.3 Clebsch approach to Euler-Poincare
9.3.1 Defining the Lie derivative
9.3.2 Clebsch Euler-Poincare principle
9.4 Lie-Poisson Hamiltonian formulation
9.4.1 Cotangent-lift momentum maps
10. Lie-Poisson Hamiltonian Form of a Continuum Spin Chain
10.1 Formulating continuum spin chain equations
10.2 Euler-Poincare equations
10.3 Hamiltonian formulation
11. Momentum Maps
11.1 The momentum map
11.2 Cotangent lift
11.3 Examples of momentum maps
12. Round, Rolling Rigid Bodies
12.1 Introduction
12.1.1 Holonomic versus nonholonomic
12.1.2 The Chaplygin ball
12.2 Nonholonomic Hamilton-Pontryagin variational principle
12.2.1 HP principle for the Chaplygin ball
12.2.2 Circular disk rocking in a vertical plane
12.2.3 Euler's rolling and spinning disk
12.3 Nonholonomic Euler-Poincare reduction
12.3.1 Semidirect-product structure
12.3.2 Euler-Poincare theorem
12.3.3 Constrained reduced Lagrangian
A. Geometrical Structure of Classical Mechanics
A.1 Manifolds
A.2 Motion: Tangent vectors and flows
A.2.1 Vector fields, integral curves and flows
A.2.2 Differentials of functions: The cotangent bundle
A.3 Tangent and cotangent lifts
A.3.1 Summary of derivatives on manifolds
B. Lie Groups and Lie Algebras
B.1 Matrix Lie groups
B.2 Defining matrix Lie algebras
B.3 Examples of matrix Lie groups
B.4 Lie group actions
B.5 Tangent and cotangent lift actions
B.6 Jacobi-Lie bracket
B.7 Lie derivative and Jacobi-Lie bracket
B.7.1 Lie derivative of a vector field
B.7.2 Vector fields in ideal fluid dynamics
C. Enhanced Coursework
C.1 Variations on rigid-body dynamics
C.1.1 Two times
C.1.2 Rotations in complex space
C.1.3 Rotations in four dimensions: SO(4)
C.2 C3 oscillators
C.3 Momentum maps for GL(n, R)
C.4 Motion on the symplectic Lie group Sp(2)
C.5 Two coupled rigid bodies
D. Poincare's 1901 Paper
Bibliography
A
B
C
D・E
F・G
H
I・J・K
L
M
N・O
P・R
S
V・W
Z
Index
备用描述
This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduate and beginning graduate students in mathematics, physics, and engineering. It treats the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint, by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level. Variational calculus on tangent spaces of Lie groups is explained in the context of familiar concrete examples. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, and then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints. The 120 Exercises and 55 Worked Answers help the student to grasp the essential aspects of the subject, and to develop proficiency in using the powerful methods of geometric mechanics. In addition, all theorems are stated and proved explicitly. The book's many examples and worked exercises make it ideal for both classroom use and self-study
备用描述
Introduces the tools and language of modern geometric mechanics to advanced undergraduate and beginning graduate students in mathematics, physics, and engineering. This book treats the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint, by formulating their solutions as coadjoint motions generated by Lie groups.
开源日期
2021-08-21
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.