Noisy Optimization With Evolution Strategies (genetic Algorithms And Evolutionary Computation) 🔍
Dirk V. Arnold (auth.)
Springer US : Imprint : Springer, Genetic Algorithms and Evolutionary Computation, Genetic Algorithms and Evolutionary Computation 8, 1, 2002
英语 [en] · PDF · 6.1MB · 2002 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
Noise is a common factor in most real-world optimization problems. Sources of noise can include physical measurement limitations, stochastic simulation models, incomplete sampling of large spaces, and human-computer interaction. Evolutionary algorithms are general, nature-inspired heuristics for numerical search and optimization that are frequently observed to be particularly robust with regard to the effects of noise.
**Noisy Optimization with Evolution Strategies** contributes to the understanding of evolutionary optimization in the presence of noise by investigating the performance of evolution strategies, a type of evolutionary algorithm frequently employed for solving real-valued optimization problems. By considering simple noisy environments, results are obtained that describe how the performance of the strategies scales with both parameters of the problem and of the strategies considered. Such scaling laws allow for comparisons of different strategy variants, for tuning evolution strategies for maximum performance, and they offer insights and an understanding of the behavior of the strategies that go beyond what can be learned from mere experimentation.
This first comprehensive work on noisy optimization with evolution strategies investigates the effects of systematic fitness overvaluation, the benefits of distributed populations, and the potential of genetic repair for optimization in the presence of noise. The relative robustness of evolution strategies is confirmed in a comparison with other direct search algorithms.
**Noisy Optimization with Evolution Strategies** is an invaluable resource for researchers and practitioners of evolutionary algorithms.
**Noisy Optimization with Evolution Strategies** contributes to the understanding of evolutionary optimization in the presence of noise by investigating the performance of evolution strategies, a type of evolutionary algorithm frequently employed for solving real-valued optimization problems. By considering simple noisy environments, results are obtained that describe how the performance of the strategies scales with both parameters of the problem and of the strategies considered. Such scaling laws allow for comparisons of different strategy variants, for tuning evolution strategies for maximum performance, and they offer insights and an understanding of the behavior of the strategies that go beyond what can be learned from mere experimentation.
This first comprehensive work on noisy optimization with evolution strategies investigates the effects of systematic fitness overvaluation, the benefits of distributed populations, and the potential of genetic repair for optimization in the presence of noise. The relative robustness of evolution strategies is confirmed in a comparison with other direct search algorithms.
**Noisy Optimization with Evolution Strategies** is an invaluable resource for researchers and practitioners of evolutionary algorithms.
备用文件名
lgrsnf/A:\compressed\10.1007%2F978-1-4615-1105-2.pdf
备用文件名
nexusstc/Noisy Optimization With Evolution Strategies/0d2f7a251c5b037aca111700b42502ee.pdf
备用文件名
zlib/Computers/Dirk V. Arnold (auth.)/Noisy Optimization With Evolution Strategies_2119111.pdf
备选作者
by Dirk V. Arnold
备用出版商
Springer Nature
备用版本
Genetic Algorithms and Evolutionary Computation, 1568-2587 -- 8, Genetic algorithms and evolutionary computation -- 8., Boston, MA, Massachusetts, 2002
备用版本
Genetic Algorithms and Evolutionary Computation, 8, 1st ed. 2002, New York, NY, 2002
备用版本
United States, United States of America
备用版本
Springer Nature, New York, NY, 2012
备用版本
Oct 24, 2012
备用版本
1, 20121206
元数据中的注释
lg965207
元数据中的注释
{"container_title":"Genetic Algorithms and Evolutionary Computation","edition":"1","isbns":["1461353971","1461511054","9781461353973","9781461511052"],"issns":["1568-2587"],"last_page":158,"publisher":"Springer US","series":"Genetic Algorithms and Evolutionary Computation 8"}
元数据中的注释
Source title: Noisy Optimization With Evolution Strategies (Genetic Algorithms and Evolutionary Computation (8))
备用描述
Front Matter....Pages i-ix
Introduction....Pages 1-6
Preliminaries....Pages 7-20
The (1 + 1)-ES: Overvaluation....Pages 21-36
The (μ, λ)-ES: Distributed Populations....Pages 37-52
The (μ/μ, λ)-ES: Genetic Repair....Pages 53-77
Comparing Approaches to Noisy Optimization....Pages 79-96
Conclusions....Pages 97-102
Back Matter....Pages 103-158
Introduction....Pages 1-6
Preliminaries....Pages 7-20
The (1 + 1)-ES: Overvaluation....Pages 21-36
The (μ, λ)-ES: Distributed Populations....Pages 37-52
The (μ/μ, λ)-ES: Genetic Repair....Pages 53-77
Comparing Approaches to Noisy Optimization....Pages 79-96
Conclusions....Pages 97-102
Back Matter....Pages 103-158
备用描述
Genetic Algorithms and Evolutionary Computation
Erscheinungsdatum: 24.10.2012
Erscheinungsdatum: 24.10.2012
开源日期
2013-08-01
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.