Advanced Combustion for Sustainable Transport 🔍
Avinash Kumar Agarwal, Antonio García Martínez, Ankur Kalwar, Hardikk Valera (eds.) Springer Singapore : Imprint: Springer, Energy, Environment, and Sustainability, Energy, Environment, and Sustainability, 1, 2022
英语 [en] · PDF · 10.7MB · 2022 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
描述
This book is based on advanced combustion technologies currently employed in internal combustion engines. It discusses different strategies for improving conventional diesel combustion. The volume includes chapters on low-temperature combustion techniques of compression-ignition engines which results in significant reduction of NOx and soot emissions. The content also highlights newly evolved gasoline compression technology and optical techniques in advanced gasoline direct injection engines. the research and its outcomes presented here highlight advancements in combustion technologies, analysing various issues related to in-cylinder combustion, pollutant formation and alternative fuels. This book will be of interest to those in academia and industry involved in fuels, IC engines, engine combustion research.
备用文件名
nexusstc/Advanced Combustion for Sustainable Transport/0f225e813e2500e3f5e7e3c469660dce.pdf
备用文件名
lgli/Advanced Combustion for Sustainable Transport.pdf
备用文件名
lgrsnf/Advanced Combustion for Sustainable Transport.pdf
备用文件名
zlib/Technique/Transport/Avinash Kumar Agarwal, Antonio García Martínez, Ankur Kalwar, Hardikk Valera (eds.)/Advanced Combustion for Sustainable Transport_18609068.pdf
备选作者
Kumar Agarwal, Avinash; Martínez, Antonio García; Kalwar, Ankur; Valera, Hardikk
备选作者
Katja Wenzel
备用出版商
Springer Nature Singapore Pte Ltd Fka Springer Science + Business Media Singapore Pte Ltd
备用版本
Energy, environment, and sustainability, 1st ed. 2022, Singapore, 2022
备用版本
Energy, Environment, and Sustainability, 2021
备用版本
1st ed. 2022, Singapore, Singapore, 2022
备用版本
5, 20211212
元数据中的注释
producers:
Springer-i
元数据中的注释
{"container_title":"Energy, Environment, and Sustainability","edition":"1","isbns":["9789811684173","9789811684180","9811684170","9811684189"],"issns":["2522-8366","2522-8374"],"last_page":364,"publisher":"Springer","series":"Energy, Environment, and Sustainability"}
备用描述
Preface 6
Contents 9
Editors and Contributors 11
Part I General 15
1 Introduction to Advanced Combustion for Sustainable Transport 16
References 19
Part II Advanced Combustion Technologies for CI Engines 20
2 Strategical Evolution of Clean Diesel Combustion 21
2.1 Introduction 22
2.1.1 Future of Diesel Engine 22
2.1.2 CDC and LTC 23
2.2 Practical Limit of the Efficiency 27
2.2.1 Constraints for Optimisation 27
2.2.2 Heat Loss 29
2.3 Mechanisms of Pollutant Formation 30
2.3.1 Soot Formation 30
2.3.2 CO and UHC Formation 33
2.4 Strategic Evolution of CDC 38
2.4.1 Injection Strategies 38
2.4.2 Swirl and Intake Geometry 41
2.4.3 Piston Bowl Geometry 44
2.5 Future Research Directions 47
2.5.1 Thermal Aspects 47
2.5.2 Interdisciplinary Aspects 48
2.6 Summary 49
References 49
3 Multi-mode Low Temperature Combustion (LTC) and Mode Switching Control 55
3.1 Introduction 56
3.1.1 Limitations of LTC Operation 59
3.1.2 Benefits of Multi-mode Operation 60
3.1.3 Optimal Control of Multi-mode LTC Engine 60
3.2 Controlled Variables 63
3.2.1 Combustion Phasing 63
3.2.2 Engine Load 64
3.2.3 Exhaust Gas Temperature 64
3.2.4 Maximum Pressure Rise Rate 65
3.2.5 Engine-Out Emissions 66
3.2.6 COVimep 67
3.3 Control Actuators 68
3.3.1 Variable Valve Actuation 68
3.3.2 Fuel Injection System 70
3.3.3 Fast Thermal Management (FTM) 71
3.3.4 Exhaust Gas Recirculation (EGR) 72
3.3.5 Intake Air Pressure Boosting System 73
3.4 LTC Control 73
3.4.1 Model-Free Closed-Loop Control Systems 74
3.4.2 Model-Based Closed-Loop Control Systems 75
3.4.3 HCCI Control 75
3.4.4 PPCI Control 77
3.4.5 RCCI Control 79
3.5 Mode Switching Control 81
3.5.1 SI-HCCI-SI Mode Switching 82
3.5.2 HCCI-ASSCI-SI Mode Switching 92
3.5.3 HCCI-PPCI Mode Switching 94
3.5.4 CDC-PPCI Mode Switching 96
3.6 CDC-RCCI Mode Switching 97
3.7 RCCI-CDF Mode Switching 98
3.8 Summary 99
References 101
4 State of the Art in Low-Temperature Combustion Technologies: HCCI, PCCI, and RCCI 106
4.1 Introduction 108
4.1.1 Single Fuelled and Dual Fuelled Advance Combustion Technique 109
4.2 Strategies to Develop Low-Temperature Combustion Technology 110
4.2.1 Homogeneous Charge Compression Ignition Combustion (HCCI) 110
4.2.2 Premixed Charge Compression Ignition Combustion (PCCI) 120
4.2.3 Reactivity Controlled Compression Ignition (RCCI) 131
4.3 Concluding Remarks 141
4.4 Declaration of Competing Interest 142
References 142
5 Combustion in Diesel Fuelled Partially Premixed Compression Ignition Engines 151
5.1 Introduction 151
5.2 Conventional Diesel Jet Combustion Model 153
5.3 Chemical Kinetics 155
5.4 Planar Laser-Induced Florescence (PLIF) 158
5.5 First Stage Ignition 160
5.6 Second Stage Ignition 163
5.7 Summary and Way Forward 169
References 170
6 Gasoline Compression Ignition Combustion Strategies and Recent Engine System Developments for Commercial and Passenger Transport Applications 174
6.1 Introduction 175
6.2 Gasoline Autoignition Behavior 176
6.3 Gasoline Spray Characteristics 180
6.4 Overview of GCI Combustion Strategies 181
6.4.1 Homogeneous or Lightly-Stratified GCI (HCCI) 181
6.4.2 Partially-Premixed GCI (PPCI) 183
6.4.3 Mixing-Controlled GCI (MCCI) 186
6.5 Recent System-Level Developments of GCI Engines 188
6.5.1 15 L Heavy-Duty GCI Engine for Meeting 0.02 g/hp-Hr Tailpipe NOx 188
6.5.2 2.2 L Gasoline Direct Injection Compression Ignition Engine 193
6.5.3 1.4 L Mixed-Mode Gasoline Low Temperature Combustion Engine 197
6.5.4 2 L Mazda Skyactiv-X Gasoline Engine 199
6.5.5 Technology Outlook for GCI 202
6.6 Summary 203
References 204
Part III Advanced Combustion Technologies for SI Engines 207
7 Optical Diagnostics for Gasoline Direct Injection Engines 208
7.1 Introduction 209
7.2 Optical Diagnostics in GDI Engines 211
7.2.1 In-cylinder Spray Characterization 211
7.2.2 In-cylinder Flows and Spray-Flow Interactions 221
7.2.3 Fuel–Air Mixture Formation 226
7.2.4 Flame Evolution and Pollutant Formation 231
7.3 Summary and Way-Forward 244
References 245
Part IV Dual-Fuel Combustion Technology 249
8 Dual-Fuel Internal Combustion Engines for Sustainable Transport Fuels 250
8.1 Introduction 251
8.2 Different Biofuels and Their Blends for Transportation 252
8.2.1 Dual Fuel System 252
8.2.2 Biomethane CNG Hybrid 255
8.3 Biogas-Biodiesel Fuel Mix for SI Engines 256
8.3.1 Potential Single Fuel Systems that Can Be Blended and Their Characteristics 257
8.3.2 Dual Fuel Blending Techniques: Methods of Preparation, Homogenization and Their Selection Criteria 257
8.3.3 Conditions for Maximizing the Combustion Potentials of Dual Fuels in ICEs 258
8.3.4 Factors Effecting Dual Fuel Characteristics in SI Engines 260
8.3.5 Dual Fuel Systems and Engine Life 264
8.3.6 Current Trends in the Use of Biofuels as High-Performance Engine Fuels 267
8.4 Future Prospects of Dual-Fuel System as an Alternative Fuel 268
8.5 Sustainable Technologies for Alternative Fuels and Future Challenges 268
8.5.1 Sustainable Technologies 268
8.5.2 Current Challenges and Future Trends 270
8.6 Conclusion 271
References 272
9 Compressed Natural Gas Utilization in Dual-Fuel Internal Combustion Engines 277
9.1 Introduction 277
9.2 Natural Gas 278
9.3 Dual-Fuel Engines 283
9.4 CNG-Diesel Dual-Fuel Engines 283
9.5 CNG-Gasoline Dual-Fuel Engine 294
9.6 Summary and Way-Forward 297
References 297
Part V Miscellaneous 301
10 Analysis of the Potential Metal Hydrides for Hydrogen Storage in Automobile Applications 302
10.1 Introduction 303
10.2 Physisorption-Based Hydrogen Storage 304
10.2.1 Metal Organic Frameworks (MOFs) 304
10.2.2 Porous Carbons 305
10.2.3 Zeolites 306
10.3 Chemisorption-Based Hydrogen Storage 307
10.3.1 Complex Metal Hydrides 307
10.3.2 Metal Hydrides 310
10.4 Metal Hydride Properties 310
10.4.1 Metal Hydrides Available 310
10.4.2 Equilibrium Pressure for Metal Hydrides 319
10.4.3 Thermal Modelling of Metal Hydrides 320
10.5 Requirements of Metal Hydrides for On-Board Applications 323
10.5.1 Achieving the Required Pressure 323
10.5.2 Achieving the Required Heat Transfer 324
10.5.3 Mass and Volume Considerations 325
10.5.4 Recyclability of Metal Hydrides for Many Cycles 326
10.6 Conclusion 327
References 328
11 Waste Heat Recovery Potential from Internal Combustion Engines Using Organic Rankine Cycle 334
11.1 Introduction 334
11.1.1 WHR System Evolution and Trends 336
11.1.2 Current State-of-the-Art of the ORC Systems 338
11.2 Fundamentals of Organic Rankine Cycle (ORC) 340
11.2.1 Thermodynamic Analysis of the ORC System 340
11.2.2 ORC System Components 344
11.2.3 Working Fluids for ORC Systems 348
11.3 Economic Analysis of the ORC Systems 354
11.4 WHR System for ICEs: Advantages and Challenges 360
11.5 Future Directions in WHR Technologies 361
References 363
开源日期
2022-01-01
更多信息……
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。