Johnson and Kiokemeister's Calculus with Analytic Geometry 🔍
Richard E. Johnson, Fred L. Kiokemeister, Elliot S. Wolk Allyn and Bacon, 6th ed., Boston, Massachusetts, 1978
英语 [en] · PDF · 39.3MB · 1978 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
This sixth edition of CALCULUS AND ANALYTIC GEOMETRY preserves the basic features of the previous editions. While maintaining the same logical and critical spirit that has characterized all previous versions of this text, the authors have introduced additional material to provide more intuitive background for the presentation of difficult topics. This interplay between intuition and rigor is obviously essential to a full understanding of the calculus. It has been the authors’ purpose to achieve a reasonable balance between these qualities.
As in the fifth edition, derivatives and integrals make an early appearance. Introductory material on algebra and analytic geometry is presented in a preliminary chapter, Chapter 0. This chapter will be a review for many students. After a short chapter on functions, limits are presented in Chapter 2. This chapter is assembled in such a way that the limit theorems can be passed over quickly if the teacher so desires. Chapters 3 and 4 are concerned with derivatives and the usual applications to extrema and motion of a particle. Although integrals are defined in Chapter 5 in terms of upper and lower sums, the fundamental theorem 1s soon given so that integrals can be evaluated as antiderivatives. By the end of Chapter 6, the calculus of algebraic functions has been introduced.
The next three chapters cover the calculus of transcendental functions. A substantial number of geometrical and physical applications is then presented in Chapter 10. Chapters 11 and 12, on improper integrals, infinite series, and related topics, may be postponed until later without breaking the continuity of the course.
Chapters 13 through 16 focus on two- and three-dimensional vectors, plane and space curves, surfaces, and elementary multidimensional calculus. Chapter 17 is an optional chapter on line integrals, Green’s theorem, and change of variable in multiple integrals. The final chapter is on differential equations.
备用文件名
lgli/johnsonkiokemeis00john.pdf
备用文件名
lgrsnf/johnsonkiokemeis00john.pdf
备用文件名
zlib/Mathematics/Richard E. Johnson, Fred L. Kiokemeister, Elliot S. Wolk/Johnson and Kiokemeister's Calculus with Analytic Geometry_19092623.pdf
备选作者
Richard E. Johnson; Fred Ludwig Kiokemeister; E. S. Wolk
备选作者
Johnson, Richard E.
备用出版商
Allyn & Bacon, Incorporated
备用出版商
William C Brown Pub
备用出版商
Longman Publishing
备用版本
United States, United States of America
备用版本
6th ed, Boston, ©1978.(Taiwan)
元数据中的注释
archive.org/details/johnsonkiokemeis00john
元数据中的注释
{"edition":"6","isbns":["0205059171","9780205059171"],"last_page":888,"publisher":"Allyn and Bacon"}
元数据中的注释
Includes index.
备用描述
Calculus with Analytic Geometry
Contents
Preface
Chapter 0 ELEMENTS OF ANALYTIC GEOMETRY
Chapter 1 FUNCTIONS
Chapter 2 LIMITS
Chapter 3 DERIVATIVES
Chapter 4 APPLICATIONS OF THE DERIVATIVE
Chapter 5 INTEGRALS
Chapter 6 APPLICATIONS OF THE INTEGRAL
Chapter 7 EXPONENTIAL AND LOGARITHMIC FUNCTIONS
Chapter 8 TRIGONOMETRIC AND INVERSE TRIGONOMETRIC FUNCTIONS
Chapter 9 FORMAL INTEGRATION
Chapter 10 FURTHER APPLICATIONS OF THE CALCULUS
Chapter 11 INDETERMINATE FORMS, IMPROPER INTEGRALS, AND TAYLOR'S FORMULA
Chapter 12 INFINITE SERIES
Chapter 13 PLANE CURVES, VECTORS, AND POLAR COORDINATES
Chapter 14 THREE-DIMENSIONAL ANALYTIC GEOMETRY
Chapter 15 DIFFERENTIAL CALCULUS OF FUNCTIONS OF SEVERAL VARIABLES
Chapter 16 MULTIPLE INTEGRATION
Chapter 17 FURTHER TOPICS IN INTEGRATION
Chapter 18 DIFFERENTIAL EQUATIONS
APPENDIXES
Appendix A FACTS AND FORMULAS FROM TRIGONOMETRY
Appendix B TABLE OF INTEGRALS
Appendix C NUMERICAL TABLES
Appendix D ANSWERS TO ODD-NUMBERED EXERCISES
INDEX
备用描述
R. E. Johnson, F. L. Kiokemeister, E. S. Wolk. Includes Index.
开源日期
2022-01-29
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。