Linear Mixed-Effects Models Using R: A Step-by-Step Approach (Springer Texts in Statistics) 🔍
Andrzej Gałecki, Tomasz Burzykowski (auth.) Springer New York; Imprint: Springer, 2013, 2013-02-05
英语 [en] · PDF · 13.6MB · 2013 · 📘 非小说类图书 · 🚀/lgli/scihub/zlib · Save
描述
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text. Andrzej Gałecki is a Research Professor in the Division of Geriatric Medicine, Department of Internal Medicine, and Institute of Gerontology at the University of Michigan Medical School, and is Research Scientist in the Department of Biostatistics at the University of Michigan School of Public Health. He earned his M. Sc. in applied mathematics (1977) from the Technical University of Warsaw, Poland, and an M.D. (1981) from the Medical University of Warsaw. In 1985 he earned a Ph. D. in epidemiology from the Institute of Mother and Child Care in Warsaw (Poland). He is a member of the Editorial Board of the Open Journal of Applied Sciences. Since 1990, Dr. Galecki has collaborated with researchers in gerontology and geriatrics. His research interests lie in the development and application of statistical methods for analyzing correlated and over- dispersed data. He developed the SAS macro NLMEM for nonlinear mixed-effects models, specified as a solution to ordinary differential equations. He also proposed a general class of variance-covariance structures for the analysis of multiple continuous dependent variables measured over time. This methodology is considered to be one of first approaches to joint models for longitudinal data. Tomasz Burzykowski is Professor of Biostatistics and Bioinformatics at Hasselt University (Belgium) and Vice-President of Research at the International Drug Development Institute (IDDI) in Louvain-la-Neuve (Belgium). He received the M. Sc. degree in applied mathematics (1990) from Warsaw University, and the M. Sc. (1991) and Ph. D. (2001) degrees from Hasselt University. He has held guest professorships at the Karolinska Institute (Sweden), the Medical University of Bialystok (Poland), and the Technical University of Warsaw (Poland). He serves as Associate Editor of Biometrics. Dr. Burzykowski published methodological work on survival analysis, meta-analyses of clinical trials, validation of surrogate endpoints, analysis of gene expression data, and modelling of peptide-centric mass-spectrometry data. He is also a co-author of numerous papers applying statistical methods to clinical data in different disease areas
备用文件名
zlib/Science (General)/Unknown./LinearMixed-EffectsModelsUsing._11815720.pdf
备选作者
Andrzej Gaecki, Tomasz Burzykowski, Andrzej Galecki
备选作者
by Andrzej Gałecki, Tomasz Burzykowski
备选作者
Gałecki, Andrzej, Burzykowski, Tomasz
备选作者
Ga?ecki, Andrzej , Tomasz Burzykowski
备选作者
Andrzej T Gałecki; Tomasz Burzykowski
备选作者
Unknown.
备用出版商
Springer US
备用版本
Springer Texts in Statistics, New York, NY, United States, 2013
备用版本
United States, United States of America
备用版本
2013, PT, 2013
元数据中的注释
sm20727330
元数据中的注释
MiU
备用描述
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text. Andrzej GaÅєecki is a Research Professor in the Division of Geriatric Medicine, Department of Internal Medicine, and Institute of Gerontology at the University of Michigan Medical School, and is Research Scientist in the Department of Biostatistics at the University of Michigan School of Public Health. He earned his M. Sc. in applied mathematics (1977) from the Technical University of Warsaw, Poland, and an M.D. (1981) from the Medical University of Warsaw. In 1985 he earned a Ph. D. in epidemiology from the Institute of Mother and Child Care in Warsaw (Poland). He is a member of the Editorial Board of the Open Journal of Applied Sciences. Since 1990, Dr. Galecki has collaborated with researchers in gerontology and geriatrics. His research interests lie in the development and application of statistical methods for analyzing correlated and over- dispersed data. He developed the SAS macro NLMEM for nonlinear mixed-effects models, specified as a solution to ordinary differential equations. He also proposed a general class of variance-covariance structures for the analysis of multiple continuous dependent variables measured over time. This methodology is considered to be one of first approaches to joint models for longitudinal data. Tomasz Burzykowski is Professor of Biostatistics and Bioinformatics at Hasselt University (Belgium) and Vice-President of Research at the International Drug Development Institute (IDDI) in Louvain-la-Neuve (Belgium). He received the M. Sc. degree in applied mathematics (1990) from Warsaw University, and the M. Sc. (1991) and Ph. D. (2001) degrees from Hasselt University. He has held guest professorships at the Karolinska Institute (Sweden), the Medical University of Bialystok (Poland), and the Technical University of Warsaw (Poland). He serves as Associate Editor of Biometrics. Dr. Burzykowski published methodological work on survival analysis, meta-analyses of clinical trials, validation of surrogate endpoints, analysis of gene expression data, and modelling of peptide-centric mass-spectrometry data. He is also a co-author of numerous papers applying statistical methods to clinical data in different disease areas
备用描述
Introduction
Linear Models for Independent Observations
Linear Fixed-effects Models for Correlated Data
Linear Mixed-effects Models.
备用描述
Springer Texts in Statistics
Erscheinungsdatum: 05.02.2013
开源日期
2015-07-13
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。