lgli/N:\!genesis_files_for_add\_add\ftp2020-10\Pearson eLibrary\1738711078_5c6e856a05e2c03b933f0f38.pdf
Introduction to feedback control 🔍
Qiu, Li, Zhou, Kemin
Pearson Prentice Hall, 2009;2010
英语 [en] · PDF · 3.7MB · 2008 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
For undergraduate courses in control theory at the junior or senior level. Introduction to Feedback Control, First Edition updates classical control theory by integrating modern optimal and robust control theory using both classical and modern computational tools. This text is ideal for anyone looking for an up-to-date book on Feedback Control. Although there are many textbooks on this subject, authors Li Qiu and Kemin Zhou provide a contemporary view of control theory that includes the development of modern optimal and robust control theory over the past 30 years. A significant portion of well-known classical control theory is maintained, but with consideration of recent developments and available modern computational tools.
备用文件名
lgrsnf/N:\!genesis_files_for_add\_add\ftp2020-10\Pearson eLibrary\1738711078_5c6e856a05e2c03b933f0f38.pdf
备用文件名
nexusstc/Introduction to feedback control/1ea3dc32343149b2cebeb5ca6752072d.pdf
备用文件名
zlib/Computers/Hardware/Qiu, Li;Zhou, Kemin/Introduction to feedback control_10673679.pdf
备选作者
Li Qiu, Kemin Zhou
备用出版商
Globe Fearon Educational Publishing
备用出版商
Sändig Reprint Verlag
备用出版商
Longman Publishing
备用出版商
CLE international
备用出版商
Cengage Gale
备用版本
United States, United States of America
备用版本
Upper Saddle River, N.J, 2010
备用版本
Upper Saddle River, N.J, 2009
备用版本
Switzerland, Liechtenstein
备用版本
1 edition, March 11, 2008
备用版本
France, France
备用版本
1, FR, 2009
元数据中的注释
lg2855674
元数据中的注释
{"isbns":["0132353962","2192222262","3253253333","9780132353960","9782192222262","9783253253331"],"publisher":"Prentice Hall"}
备用描述
Contents......Page 6
Cover......Page 1
Preface......Page 10
1.1 Introduction......Page 14
1.2 Basic Concepts......Page 18
1.3 Basic Structures of Feedback Systems......Page 20
1.4 About This Book......Page 22
Notes and References......Page 24
2 Modeling and Simulation......Page 26
2.1.1 Electrical systems......Page 27
2.1.2 Mechanical systems......Page 30
2.1.3 Electromechanical systems......Page 31
2.2 State Space Model and Linearization......Page 34
2.3 Transfer Functions and Impulse Responses......Page 40
2.4 Simplifying Block Diagrams......Page 44
2.5 Transfer Function Modeling......Page 47
2.6 MATLAB Manipulation of LTI Systems......Page 49
2.7.1 Hardware simulation and implementation......Page 52
2.7.2 Software simulation and implementation......Page 55
2.8 MISO and SIMO Systems......Page 57
2.9 Modeling of Closed-Loop Systems......Page 60
2.10.1 Ball and beam system......Page 66
2.10.2 Inverted pendulum system......Page 68
Problems......Page 70
Notes and References......Page 75
3 Stability and Stabilization......Page 76
3.1 Concept of Stability......Page 77
3.2 Routh Criterion......Page 81
3.3 Other Stability Criteria......Page 89
3.4 Robust Stability......Page 95
3.5 Stability of Closed-Loop Systems......Page 99
3.6 Pole Placement Design......Page 108
3.7 All Stabilizing Controllers*......Page 114
3.8 All Stabilizing 2DOF Controllers*......Page 119
3.9.1 Ball and beam system......Page 124
3.9.2 Inverted pendulum system......Page 127
Problems......Page 133
Notes and References......Page 136
4 Time-Domain Analysis......Page 140
4.1 Responses to Typical Input Signals......Page 141
4.2 Step Response Analysis......Page 146
4.3 Dominant Poles and Zeros......Page 156
4.4 Steady-State Response and System Type......Page 159
4.5 Internal Model Principle......Page 166
4.6 Undershoot......Page 169
4.7 Overshoot......Page 173
4.8 Time-Domain Signal and System Norms......Page 179
4.9 Computation of the Time-Domain 2-Norm......Page 183
Problems......Page 188
Notes and References......Page 195
5 Root-Locus Method......Page 198
5.1 Root-Locus Techniques......Page 199
5.2 Derivations of Root-Locus Rules*......Page 208
5.3 Effects of Adding Poles and Zeros......Page 211
5.4 Phase-Lag Controller......Page 212
5.5 PI Controller......Page 217
5.6 Phase-Lead Controller......Page 218
5.7 PD Controller......Page 224
5.8 Lead-Lag or PID Controller......Page 228
5.9 2DOF Controllers......Page 231
5.11 Complementary Root-Locus......Page 232
5.12 Strong Stabilization......Page 235
5.13 Case Study – Ball and Beam System......Page 239
Problems......Page 243
Notes and References......Page 246
6 Frequency-Domain Analysis......Page 247
6.1 Frequency Response......Page 248
6.2 Bode Diagrams......Page 257
6.3 Nyquist Stability Criterion......Page 265
6.4 Gain Margin and Phase Margin......Page 273
6.5 Closed-Loop Frequency Response......Page 278
6.6 Nichols Chart......Page 281
6.7 Riemann Plot......Page 284
Problems......Page 288
Notes and References......Page 291
7 Classical Design in Frequency Domain......Page 292
7.1 Phase-Lag Controller......Page 293
7.2 PI Controller......Page 297
7.3 Phase-Lead Controller......Page 299
7.4 PD Controller......Page 305
7.5 Lead-Lag or PID Controller......Page 308
7.6.1 Ziegler and Nichols first method......Page 311
7.6.2 Frequency-response analysis of the Ziegler and Nichols tuning rules......Page 312
7.6.3 Ziegler and Nichols second method......Page 316
7.7 Derivative Control......Page 317
7.8 Alternative PID Implementation......Page 321
7.9 Integral Control and Antiwindup......Page 322
7.10 Design by Loopshaping......Page 325
7.11 Bode's Gain and Phase Relation......Page 327
7.12 Bode's Sensitivity Integral......Page 332
Problems......Page 334
Notes and References......Page 336
8.1 Frequency-Domain 2-Norm of Signals and Systems......Page 338
8.2 Frequency-Domain ∞-Norm of Systems......Page 346
8.3 Model Uncertainties and Robust Stability......Page 350
8.4 Chordal and Spherical Distances......Page 358
8.5 Distance between Systems......Page 361
8.6 Uncertainty and Robustness......Page 367
Problems......Page 374
Notes and References......Page 377
9.1 Controller with Optimal Transient......Page 378
9.2 Controller with Weighted Optimal Transient......Page 385
9.3 Minimum-Energy Stabilization......Page 391
9.4 Derivation of the Optimal Controller*......Page 393
9.5 Optimal Robust Stabilization......Page 398
9.6 Stabilization with Guaranteed Robustness......Page 407
Problems......Page 411
Notes and References......Page 413
A.1 Definition......Page 414
A.2 Properties......Page 415
A.3 Inverse Laplace Transform......Page 418
Notes and References......Page 423
B.1 Matrices......Page 425
B.2 Polynomials......Page 427
Notes and References......Page 431
C.2 Chapter 2......Page 432
C.3 Chapter 3......Page 435
C.4 Chapter 4......Page 436
C.5 Chapter 5......Page 438
C.6 Chapter 6......Page 439
C.7 Chapter 7......Page 440
C.9 Chapter 9......Page 441
Bibliography......Page 443
G......Page 450
S......Page 451
Z......Page 452
Cover......Page 1
Preface......Page 10
1.1 Introduction......Page 14
1.2 Basic Concepts......Page 18
1.3 Basic Structures of Feedback Systems......Page 20
1.4 About This Book......Page 22
Notes and References......Page 24
2 Modeling and Simulation......Page 26
2.1.1 Electrical systems......Page 27
2.1.2 Mechanical systems......Page 30
2.1.3 Electromechanical systems......Page 31
2.2 State Space Model and Linearization......Page 34
2.3 Transfer Functions and Impulse Responses......Page 40
2.4 Simplifying Block Diagrams......Page 44
2.5 Transfer Function Modeling......Page 47
2.6 MATLAB Manipulation of LTI Systems......Page 49
2.7.1 Hardware simulation and implementation......Page 52
2.7.2 Software simulation and implementation......Page 55
2.8 MISO and SIMO Systems......Page 57
2.9 Modeling of Closed-Loop Systems......Page 60
2.10.1 Ball and beam system......Page 66
2.10.2 Inverted pendulum system......Page 68
Problems......Page 70
Notes and References......Page 75
3 Stability and Stabilization......Page 76
3.1 Concept of Stability......Page 77
3.2 Routh Criterion......Page 81
3.3 Other Stability Criteria......Page 89
3.4 Robust Stability......Page 95
3.5 Stability of Closed-Loop Systems......Page 99
3.6 Pole Placement Design......Page 108
3.7 All Stabilizing Controllers*......Page 114
3.8 All Stabilizing 2DOF Controllers*......Page 119
3.9.1 Ball and beam system......Page 124
3.9.2 Inverted pendulum system......Page 127
Problems......Page 133
Notes and References......Page 136
4 Time-Domain Analysis......Page 140
4.1 Responses to Typical Input Signals......Page 141
4.2 Step Response Analysis......Page 146
4.3 Dominant Poles and Zeros......Page 156
4.4 Steady-State Response and System Type......Page 159
4.5 Internal Model Principle......Page 166
4.6 Undershoot......Page 169
4.7 Overshoot......Page 173
4.8 Time-Domain Signal and System Norms......Page 179
4.9 Computation of the Time-Domain 2-Norm......Page 183
Problems......Page 188
Notes and References......Page 195
5 Root-Locus Method......Page 198
5.1 Root-Locus Techniques......Page 199
5.2 Derivations of Root-Locus Rules*......Page 208
5.3 Effects of Adding Poles and Zeros......Page 211
5.4 Phase-Lag Controller......Page 212
5.5 PI Controller......Page 217
5.6 Phase-Lead Controller......Page 218
5.7 PD Controller......Page 224
5.8 Lead-Lag or PID Controller......Page 228
5.9 2DOF Controllers......Page 231
5.11 Complementary Root-Locus......Page 232
5.12 Strong Stabilization......Page 235
5.13 Case Study – Ball and Beam System......Page 239
Problems......Page 243
Notes and References......Page 246
6 Frequency-Domain Analysis......Page 247
6.1 Frequency Response......Page 248
6.2 Bode Diagrams......Page 257
6.3 Nyquist Stability Criterion......Page 265
6.4 Gain Margin and Phase Margin......Page 273
6.5 Closed-Loop Frequency Response......Page 278
6.6 Nichols Chart......Page 281
6.7 Riemann Plot......Page 284
Problems......Page 288
Notes and References......Page 291
7 Classical Design in Frequency Domain......Page 292
7.1 Phase-Lag Controller......Page 293
7.2 PI Controller......Page 297
7.3 Phase-Lead Controller......Page 299
7.4 PD Controller......Page 305
7.5 Lead-Lag or PID Controller......Page 308
7.6.1 Ziegler and Nichols first method......Page 311
7.6.2 Frequency-response analysis of the Ziegler and Nichols tuning rules......Page 312
7.6.3 Ziegler and Nichols second method......Page 316
7.7 Derivative Control......Page 317
7.8 Alternative PID Implementation......Page 321
7.9 Integral Control and Antiwindup......Page 322
7.10 Design by Loopshaping......Page 325
7.11 Bode's Gain and Phase Relation......Page 327
7.12 Bode's Sensitivity Integral......Page 332
Problems......Page 334
Notes and References......Page 336
8.1 Frequency-Domain 2-Norm of Signals and Systems......Page 338
8.2 Frequency-Domain ∞-Norm of Systems......Page 346
8.3 Model Uncertainties and Robust Stability......Page 350
8.4 Chordal and Spherical Distances......Page 358
8.5 Distance between Systems......Page 361
8.6 Uncertainty and Robustness......Page 367
Problems......Page 374
Notes and References......Page 377
9.1 Controller with Optimal Transient......Page 378
9.2 Controller with Weighted Optimal Transient......Page 385
9.3 Minimum-Energy Stabilization......Page 391
9.4 Derivation of the Optimal Controller*......Page 393
9.5 Optimal Robust Stabilization......Page 398
9.6 Stabilization with Guaranteed Robustness......Page 407
Problems......Page 411
Notes and References......Page 413
A.1 Definition......Page 414
A.2 Properties......Page 415
A.3 Inverse Laplace Transform......Page 418
Notes and References......Page 423
B.1 Matrices......Page 425
B.2 Polynomials......Page 427
Notes and References......Page 431
C.2 Chapter 2......Page 432
C.3 Chapter 3......Page 435
C.4 Chapter 4......Page 436
C.5 Chapter 5......Page 438
C.6 Chapter 6......Page 439
C.7 Chapter 7......Page 440
C.9 Chapter 9......Page 441
Bibliography......Page 443
G......Page 450
S......Page 451
Z......Page 452
备用描述
<p>The Development of modern Optimal and robust control theory in the last thirty years calls for significant change in the teaching of classic control. It is the authorsâ goal to integrate the modern optimal and robust control theory into classical control theory using tools already available from the context of classic control. This book represents the authorsâ first attempt towards this challenging goal. The book includes a significant portion of the well-known classical control material, albeit with some twists and extensions whenever appropriate in consideration of recent developments and the available modern computational tools. There is significant coverage on some nontraditional topics such as</p><ul><li>Two-degree-of-freedom control</li><li>Kharitonov robust stability results of polynomials</li><li>Performance limitations due to non-minimum phase zeros</li><li>Overshoot and undershoot and their relations with poles/zeros locations</li><li>Routh table method for computing 2-norm</li><li>Visualizing frequency responses from the Riemann sphere</li><li>Modern optimal and robust control using classical tools</li></ul><p>The book includes the following chapters:</p><ul><li>Modeling and simulation</li><li>Stability and stabilization</li><li>Time domain analysis</li><li>Root locus method</li><li>Frequency domain analysis</li><li>Classical design in frequency domain</li><li>Performance and robustness</li><li>Optimal and robust control</li></ul>
开源日期
2020-11-29
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.