A Probabilistic Theory of Pattern Recognition (Stochastic Modelling and Applied Probability, 31) 🔍
Luc Devroye, László Györfi, Gábor Lugosi (auth.) Springer-Verlag New York, Stochastic Modelling and Applied Probability 31, 1, 1996
英语 [en] · PDF · 27.3MB · 1996 · 📘 非小说类图书 · 🚀/lgli/lgrs/scihub/zlib · Save
描述
Pattern recognition presents one of the most significant challenges for scientists and engineers, and many different approaches have been proposed. The aim of this book is to provide a self-contained account of probabilistic analysis of these approaches. The book includes a discussion of distance measures, nonparametric methods based on kernels or nearest neighbors, Vapnik-Chervonenkis theory, epsilon entropy, parametric classification, error estimation, free classifiers, and neural networks. Wherever possible, distribution-free properties and inequalities are derived. A substantial portion of the results or the analysis is new. Over 430 problems and exercises complement the material.
Erscheinungsdatum: 22.11.2013
备用文件名
lgrsnf/D:\HDD4\!genesis\SPR_NEW_2013-12\bok%3A978-1-4612-0711-5.pdf
备用文件名
scihub/10.1007/978-1-4612-0711-5.pdf
备用文件名
zlib/Computers/Computer Science/Luc Devroye, László Györfi, Gábor Lugosi (auth.)/A Probabilistic Theory of Pattern Recognition_2296420.pdf
备选作者
Devroye, Luc, Györfi, Laszlo, Lugosi, Gabor
备选作者
Luc Devroye; Laszlo Györfi; Gabor Lugosi
备选作者
Luc Devroye; László Györfi; Gabor Lugosi
备用出版商
Springer Science & Business Media
备用出版商
Springer London, Limited
备用版本
Springer Nature (Textbooks & Major Reference Works), New York, 1996
备用版本
Softcover reprint of the original 1st ed. 1996, 2013-11-22
备用版本
Applications of mathematics, 31, Repr, New York, 2014
备用版本
Applications of mathematics, New York, 1996
备用版本
Place of publication not identified, 2014
备用版本
United States, United States of America
备用版本
Nov 22, 2013
元数据中的注释
sm23250022
元数据中的注释
Source title: A Probabilistic Theory of Pattern Recognition (Stochastic Modelling and Applied Probability (31))
备用描述
Front Matter....Pages i-xv
Introduction....Pages 1-8
The Bayes Error....Pages 9-20
Inequalities and Alternate Distance Measures....Pages 21-37
Linear Discrimination....Pages 39-59
Nearest Neighbor Rules....Pages 61-90
Consistency....Pages 91-109
Slow Rates of Convergence....Pages 111-119
Error Estimation....Pages 121-132
The Regular Histogram Rule....Pages 133-145
Kernel Rules....Pages 147-167
Consistency of the k -Nearest Neighbor Rule....Pages 169-185
Vapnik-Chervonenkis Theory....Pages 187-213
Combinatorial Aspects of Vapnik-Chervonenkis Theory....Pages 215-232
Lower Bounds for Empirical Classifier Selection....Pages 233-247
The Maximum Likelihood Principle....Pages 249-262
Parametric Classification....Pages 263-278
Generalized Linear Discrimination....Pages 279-288
Complexity Regularization....Pages 289-301
Condensed and Edited Nearest Neighbor Rules....Pages 303-313
Tree Classifiers....Pages 315-362
Data-Dependent Partitioning....Pages 363-385
Splitting the Data....Pages 387-396
The Resubstitution Estimate....Pages 397-405
Deleted Estimates of the Error Probability....Pages 407-421
Automatic Kernel Rules....Pages 423-449
Automatic Nearest Neighbor Rules....Pages 451-459
Hypercubes and Discrete Spaces....Pages 461-477
Epsilon Entropy and Totally Bounded Sets....Pages 479-487
Uniform Laws of Large Numbers....Pages 489-506
Neural Networks....Pages 507-547
Other Error Estimates....Pages 549-559
Feature Extraction....Pages 561-574
Back Matter....Pages 575-638
备用描述
Pattern recognition presents one of the most significant challenges for scientists and engineers, and many different approaches have been proposed. The aim of this book is to provide a self-contained account of probabilistic analysis of these approaches. The book includes a discussion of distance measures, nonparametric methods based on kernels or nearest neighbors, Vapnik-Chervonenkis theory, epsilon entropy, parametric classification, error estimation, tree classifiers, and neural networks
备用描述
A Self-contained And Coherent Account Of Probabilistic Techniques, Covering: Distance Measures, Kernel Rules, Nearest Neighbour Rules, Vapnik-chervonenkis Theory, Parametric Classification, And Feature Extraction. Each Chapter Concludes With Problems And Exercises To Further The Readers Understanding. Both Research Workers And Graduate Students Will Benefit From This Wide-ranging And Up-to-date Account Of A Fast- Moving Field.
开源日期
2014-01-18
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。