量子系统中的几何相位 : 基本原理, 数学概念及其在分子物理和凝聚态物理中的应用 : foundations, mathematical concepus, and applications in molecular and condensed matter physics : [英文本 🔍
博赫姆(A.Bohm),A.Mostafazadeh,H.Koizumi,Q.Niu,J.Zwanziger著
北京:科学出版社, Guo wai wu li ming zhu xi lie ;v26, Ying yin ban, Beijing, 2009
中文 [zh] · PDF · 115.6MB · 2009 · 📗 未知类型的图书 · 🚀/duxiu/upload · Save
描述
Aimedatgraduatephysicsandchemistry,students,thisisthefirstComprechensivemonographcoveringtheconceptofthegeometricphaseinquantumphysicsfromitsmathematicalfoundationstoitsphysicalapplicationsandexperimentalmanifestations,ItcontainsallthepremisesoftheadiabaticBerryphaseaswellastheexactAnandan-Aharonovphase.Itdiscussesquantumsystemsinaclassicaltime-independentenvironment(timedependentHamiltonians)andquantumsystemsinachangingenvironment(gaugetheoryofmolecularphysics).ThemathematicalmethodsusedareacombinationofdifferentialgeometryandthetheoryofIinearoperatorsinHilbertSpace,Asaresult,themonographdemonstrateshownon-trivialgaugetheoriesnaturallyariseandhowtheconsequencescanbeexperimentallyobserved.Readersbenefitbygainingadeepunderstandingofthelong-ignoredgaugetheoreticeffectsofquantummethanicsandhowtomeasurethem.
备选标题
The Geometric Phase in Quantum Systems : Foundations, mathematical concepts, and applications in molecular and condensed matter physics
备选标题
量子系统中的几何相位 : 基本原理、数学概念及其在分子物理和凝聚态物理中的应用(影印版)
备选标题
XBWL.s10
备选作者
Edited by A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger
备选作者
A. Bohm. [et al]著; Hm Bo
备选作者
A.Bohm[等著]
备选作者
lyl
备用出版商
Science Press
备用版本
国外物理名著系列, Reprinted ed, Beijing, 2009
备用版本
China, People's Republic, China
备用版本
Reprinted ed., China, 2009
备用版本
1, 国外物理名著系列, 2009-03
元数据中的注释
producers:
AFPL Ghostscript 8.50
AFPL Ghostscript 8.50
元数据中的注释
Includes bibliographical references and index.
Reprint. Originally published : Springer-Verlag, c2003.
Reprint. Originally published : Springer-Verlag, c2003.
备用描述
目录 10
1. Introduction 15
2. Quantal Phase Factors for Adiabatic Changes 19
2.1 Introduction 19
2.2 Adiabatic Approximation 24
2.3 Berry's Adiabatic Phase 28
2.4 Topological Phases and the Aharonov-Bohm Effect 36
Problems 43
3. Spinning Quantum System in an External Magnetic Field 45
3.1 Introduction 45
3.2 The Parameterization of the Basis Vectors 45
3.3 Mead-Berry Connection and Berry Phase for Adiabatic Evolutions-Magnetic Monopole Potentials 50
3.4 The Exact Solution of the SchrSdinger Equation 56
3.5 Dynamical and Geometrical Phase Factors for Non-Adiabatic Evolution 62
Problems 66
4. Quantal Phases for General Cyclic Evolution 67
4.1 Introduction 67
4.2 Aharonov-Anandan Phase 67
4.3 Exact Cyclic Evolution for Periodic Hamiltonians 74
Problems 78
5. Fiber Bundles and Gauge Theories 79
5.1 Introduction 79
5.2 From Quantal Phases to Fiber Bundles 79
5.3 An Elementary Introduction to Fiber Bundles 81
5.4 Geometry of Principal Bundles and the Concept of Holonomy 90
5.5 Gauge Theories 101
5.6 Mathematical Foundations of Gauge Theories and Geometry of Vector Bundles 109
Problems 116
6. Mathematical Structure of the Geometric Phase I: The Abelian Phase 121
6.1 Introduction 121
6.2 Holonomy Interpretations of the Geometric Phase 121
6.3 Classification of U(1) Principal Bundles and the Relation Between the Berry-Simon and Aharonov-Anandan Interpretations of the Adiabatic Phase 127
6.4 Holonomy Interpretation of the Non-Adiabatic Phase Using a Bundle over the Parameter Space 132
6.5 Spinning Quantum System and Topological Aspects of the Geometric Phase 137
Problems 140
7. Mathematical Structure of the Geometric Phase II: The Non-Abelian Phase 143
7.1 Introduction 143
7.2 The Non-Abelian Adiabatic Phase 143
7.3 The Non-Abelian Geometric Phase 150
7.4 Holonomy Interpretations of the Non-Abelian Phase 153
7.5 Classification of U(N) Principal Bundles and the Relation Between the Berry-Simon and Aharonov-Anandan Interpretations of Non-Abelian Phase 155
Problems 159
8. A Quantum Physical System in a Quantum Environment-The Gauge Theory of Molecular Physics 161
8.1 Introduction 161
8.2 The Hamiltonian of Molecular Systems 162
8.3 The Born-Oppenheimer Method 171
8.4 The Gauge Theory of Molecular Physics 180
8.5 The Electronic States of Diatomic Molecule 188
8.6 The Monopole of the Diatomic Molecule 190
Problems 205
9. Crossing of Potential Energy Surfaces and the Molecular Aharonov-Bohm Effect 209
9.1 Introduction 209
9.2 Crossing of Potential Energy Surfaces 210
9.3 Conical Intersections and Sign-Change of Wave Functions 212
9.4 Conical Intersections in Jahn-Teller Systems 223
9.5 Symmetry of the Ground State in Jahn Teller Systems 227
9.6 Geometric Phase in Two Kramers Doublet Systems 233
9.7 Adiabatic Diabatic Transformation 236
10. Experimental Detection of Geometric Phases I: Quantum Systems in Classical Environments 239
10.1 Introduction 239
10.2 The Spin Berry Phase Controlled by Magnetic Fields 239
10.2.1 Spins in Magnetic Fields: The Laboratory Frame 239
10.2.2 Spins in Magnetic Fields: The Rotating Frame 245
10.2.3 Adiabatic Reorientation in Zero Field 251
10.3 Observation of the Aharonov-Anandan Phase Through the Cyclic Evolution of Quantum States 262
Problems 266
11. Experimental Detection of Geometric Phases II: Quantum Systems in Quantum Environments 269
11.1 Introduction 269
11.2 Internal Rotors Coupled to External Rotors 270
11.3 Electronic-Rotational Coupling 273
11.4 Vibronic Problems in Jahn-Teller Systems 274
11.4.1 Transition Metal Ions in Crystals 275
11.4.2 Hydrocarbon Radicals 278
11.4.3 Alkali Metal Trimers 279
11.5 The Geometric Phase in Chemical Reactions 284
12. Geometric Phase in Condensed Matter I: Bloch Bands 291
12.1 Introduction 291
12.2 Bloch Theory 292
12.2.1 One-Dimensional Case 292
12.2.2 Three-Dimensional Case 294
12.2.3 Band Structure Calculation 295
12.3 Semiclassical Dynamics 297
12.3.1 Equations of Motion 297
12.3.2 Symmetry Analysis 299
12.3.3 Derivation of the Semiclassical Formulas 300
12.3.4 Tiine-Dependent Bands 301
12.4 Applications of Semiclassical Dynamics 302
12.4.1 Uniform DC Electric Field 302
12.4.2 Uniform and Constant Magnetic Field 303
12.4.3 Perpendicular Electric and Magnetic Fields 304
12.4.4 Transport 304
12.5 Wannier Functions 306
12.5.1 General Properties 306
12.5.2 Localization Properties 307
12.6 Some Issues on Band Insulators 309
12.6.1 Quantized Adiabatic Particle Transport 309
12.6.2 Polarization 311
Problems 313
13. Geometric Phase in Condensed Matter II: The Quantum Hall Effect 315
13.1 Introduction 315
13.2 Basics of the Quantum Hall Effect 316
13.2.1 The Hall Effect 316
13.2.2 The Quantum Hall Effect 316
13.2.3 The Ideal Model 318
13.2.4 Corrections to Quantization 319
13.3 Magnetic Bands in Periodic Potentials 321
13.3.1 Single-Band Approximation in a Weak Magnetic Field 321
13.3.2 Harper's Equation and Hofstadter's Butterfly 323
13.3.3 Magnetic Translations 325
13.3.4 Quantized Hall Conductivity 328
13.3.5 Evaluation of the Chern Number 330
13.3.6 Semiclassical Dynamics and Quantization 332
13.3.7 Structure of Magnetic Bands and Hyperorbit Levels 335
13.3.8 Hierarchical Structure of the Butterfly 339
13.3.9 Quantization of Hyperorbits and Rule of Band Splitting 341
13.4 Quantization of Hall Conductance in Disordered Systems 343
13.4.1 Spectrum and Wave Functions 343
13.4.2 Perturbation and Scattering Theory 345
13.4.3 Laughlin's Gauge Argument 346
13.4.4 Hall Conductance as a Topological Invariant 347
14. Geometric Phase in Condensed Matter III: Many-Body Systems 351
14.1 Introduction 351
14.2 Fractional Quantum Hall Systems 351
14.2.1 Laughlin Wave Function 351
14.2.2 Fractional Charged Excitations 354
14.2.3 Fractional Statistics 355
14.2.4 Degeneracy and Fractional Quantization 358
14.3 Spin-Wave Dynamics in Itinerant Magnets 360
14.3.1 General Formulation 360
14.3.2 Tight-Binding Limit and Beyond 362
14.3.3 Spin Wave Spectrum 364
14.4 Geometric Phase in Doubly-Degenerate Electronic Bands 367
Problem 373
A. An Elementary Introduction to Manifolds and Lie Groups 375
A.1 Introduction 375
A.2 Differentiable Manifolds 385
A.3 Lie Groups 402
B. A Brief Review of Point Groups of Molecules with Application to Jahn-Teller Systems 421
References 443
Index 451
参考文献 375
1. Introduction 15
2. Quantal Phase Factors for Adiabatic Changes 19
2.1 Introduction 19
2.2 Adiabatic Approximation 24
2.3 Berry's Adiabatic Phase 28
2.4 Topological Phases and the Aharonov-Bohm Effect 36
Problems 43
3. Spinning Quantum System in an External Magnetic Field 45
3.1 Introduction 45
3.2 The Parameterization of the Basis Vectors 45
3.3 Mead-Berry Connection and Berry Phase for Adiabatic Evolutions-Magnetic Monopole Potentials 50
3.4 The Exact Solution of the SchrSdinger Equation 56
3.5 Dynamical and Geometrical Phase Factors for Non-Adiabatic Evolution 62
Problems 66
4. Quantal Phases for General Cyclic Evolution 67
4.1 Introduction 67
4.2 Aharonov-Anandan Phase 67
4.3 Exact Cyclic Evolution for Periodic Hamiltonians 74
Problems 78
5. Fiber Bundles and Gauge Theories 79
5.1 Introduction 79
5.2 From Quantal Phases to Fiber Bundles 79
5.3 An Elementary Introduction to Fiber Bundles 81
5.4 Geometry of Principal Bundles and the Concept of Holonomy 90
5.5 Gauge Theories 101
5.6 Mathematical Foundations of Gauge Theories and Geometry of Vector Bundles 109
Problems 116
6. Mathematical Structure of the Geometric Phase I: The Abelian Phase 121
6.1 Introduction 121
6.2 Holonomy Interpretations of the Geometric Phase 121
6.3 Classification of U(1) Principal Bundles and the Relation Between the Berry-Simon and Aharonov-Anandan Interpretations of the Adiabatic Phase 127
6.4 Holonomy Interpretation of the Non-Adiabatic Phase Using a Bundle over the Parameter Space 132
6.5 Spinning Quantum System and Topological Aspects of the Geometric Phase 137
Problems 140
7. Mathematical Structure of the Geometric Phase II: The Non-Abelian Phase 143
7.1 Introduction 143
7.2 The Non-Abelian Adiabatic Phase 143
7.3 The Non-Abelian Geometric Phase 150
7.4 Holonomy Interpretations of the Non-Abelian Phase 153
7.5 Classification of U(N) Principal Bundles and the Relation Between the Berry-Simon and Aharonov-Anandan Interpretations of Non-Abelian Phase 155
Problems 159
8. A Quantum Physical System in a Quantum Environment-The Gauge Theory of Molecular Physics 161
8.1 Introduction 161
8.2 The Hamiltonian of Molecular Systems 162
8.3 The Born-Oppenheimer Method 171
8.4 The Gauge Theory of Molecular Physics 180
8.5 The Electronic States of Diatomic Molecule 188
8.6 The Monopole of the Diatomic Molecule 190
Problems 205
9. Crossing of Potential Energy Surfaces and the Molecular Aharonov-Bohm Effect 209
9.1 Introduction 209
9.2 Crossing of Potential Energy Surfaces 210
9.3 Conical Intersections and Sign-Change of Wave Functions 212
9.4 Conical Intersections in Jahn-Teller Systems 223
9.5 Symmetry of the Ground State in Jahn Teller Systems 227
9.6 Geometric Phase in Two Kramers Doublet Systems 233
9.7 Adiabatic Diabatic Transformation 236
10. Experimental Detection of Geometric Phases I: Quantum Systems in Classical Environments 239
10.1 Introduction 239
10.2 The Spin Berry Phase Controlled by Magnetic Fields 239
10.2.1 Spins in Magnetic Fields: The Laboratory Frame 239
10.2.2 Spins in Magnetic Fields: The Rotating Frame 245
10.2.3 Adiabatic Reorientation in Zero Field 251
10.3 Observation of the Aharonov-Anandan Phase Through the Cyclic Evolution of Quantum States 262
Problems 266
11. Experimental Detection of Geometric Phases II: Quantum Systems in Quantum Environments 269
11.1 Introduction 269
11.2 Internal Rotors Coupled to External Rotors 270
11.3 Electronic-Rotational Coupling 273
11.4 Vibronic Problems in Jahn-Teller Systems 274
11.4.1 Transition Metal Ions in Crystals 275
11.4.2 Hydrocarbon Radicals 278
11.4.3 Alkali Metal Trimers 279
11.5 The Geometric Phase in Chemical Reactions 284
12. Geometric Phase in Condensed Matter I: Bloch Bands 291
12.1 Introduction 291
12.2 Bloch Theory 292
12.2.1 One-Dimensional Case 292
12.2.2 Three-Dimensional Case 294
12.2.3 Band Structure Calculation 295
12.3 Semiclassical Dynamics 297
12.3.1 Equations of Motion 297
12.3.2 Symmetry Analysis 299
12.3.3 Derivation of the Semiclassical Formulas 300
12.3.4 Tiine-Dependent Bands 301
12.4 Applications of Semiclassical Dynamics 302
12.4.1 Uniform DC Electric Field 302
12.4.2 Uniform and Constant Magnetic Field 303
12.4.3 Perpendicular Electric and Magnetic Fields 304
12.4.4 Transport 304
12.5 Wannier Functions 306
12.5.1 General Properties 306
12.5.2 Localization Properties 307
12.6 Some Issues on Band Insulators 309
12.6.1 Quantized Adiabatic Particle Transport 309
12.6.2 Polarization 311
Problems 313
13. Geometric Phase in Condensed Matter II: The Quantum Hall Effect 315
13.1 Introduction 315
13.2 Basics of the Quantum Hall Effect 316
13.2.1 The Hall Effect 316
13.2.2 The Quantum Hall Effect 316
13.2.3 The Ideal Model 318
13.2.4 Corrections to Quantization 319
13.3 Magnetic Bands in Periodic Potentials 321
13.3.1 Single-Band Approximation in a Weak Magnetic Field 321
13.3.2 Harper's Equation and Hofstadter's Butterfly 323
13.3.3 Magnetic Translations 325
13.3.4 Quantized Hall Conductivity 328
13.3.5 Evaluation of the Chern Number 330
13.3.6 Semiclassical Dynamics and Quantization 332
13.3.7 Structure of Magnetic Bands and Hyperorbit Levels 335
13.3.8 Hierarchical Structure of the Butterfly 339
13.3.9 Quantization of Hyperorbits and Rule of Band Splitting 341
13.4 Quantization of Hall Conductance in Disordered Systems 343
13.4.1 Spectrum and Wave Functions 343
13.4.2 Perturbation and Scattering Theory 345
13.4.3 Laughlin's Gauge Argument 346
13.4.4 Hall Conductance as a Topological Invariant 347
14. Geometric Phase in Condensed Matter III: Many-Body Systems 351
14.1 Introduction 351
14.2 Fractional Quantum Hall Systems 351
14.2.1 Laughlin Wave Function 351
14.2.2 Fractional Charged Excitations 354
14.2.3 Fractional Statistics 355
14.2.4 Degeneracy and Fractional Quantization 358
14.3 Spin-Wave Dynamics in Itinerant Magnets 360
14.3.1 General Formulation 360
14.3.2 Tight-Binding Limit and Beyond 362
14.3.3 Spin Wave Spectrum 364
14.4 Geometric Phase in Doubly-Degenerate Electronic Bands 367
Problem 373
A. An Elementary Introduction to Manifolds and Lie Groups 375
A.1 Introduction 375
A.2 Differentiable Manifolds 385
A.3 Lie Groups 402
B. A Brief Review of Point Groups of Molecules with Application to Jahn-Teller Systems 421
References 443
Index 451
参考文献 375
开源日期
2025-10-27
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.