nexusstc/Cognitive Electronic Warfare: An Artificial Intelligence Approach/2d5cd55a712332517ec827d11b1333d9.pdf
Cognitive electronic warfare : an artificial intelligence approach 🔍
Karen Zita Haigh, Julia Andrusenko
Artech House Publishers, 1, 2021
英语 [en] · PDF · 6.2MB · 2021 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
This comprehensive book gives an overview of how cognitive systems and artificial intelligence (AI) can be used in electronic warfare (EW). Readers will learn how EW systems respond more quickly and effectively to battlefield conditions where sophisticated radars and spectrum congestion put a high priority on EW systems that can characterize and classify novel waveforms, discern intent, and devise and test countermeasures. Specific techniques are covered for optimizing a cognitive EW system as well as evaluating its ability to learn new information in real time. The book presents AI for electronic support (ES), including characterization, classification, patterns of life, and intent recognition. Optimization techniques, including temporal tradeoffs and distributed optimization challenges are also discussed. The issues concerning real-time in-mission machine learning and suggests some approaches to address this important challenge are presented and described. The book covers electronic battle management, data management, and knowledge sharing. Evaluation approaches, including how to show that a machine learning system can learn how to handle novel environments, are also discussed. Written by experts with first-hand experience in AI-based EW, this is the first book on in-mission real-time learning and optimization.
备用文件名
lgli/Cognitive Electronic Warfare An Artificial Intelligence Approach.pdf
备用文件名
lgrsnf/Cognitive Electronic Warfare An Artificial Intelligence Approach.pdf
备用文件名
zlib/Engineering/Karen Zita Haigh, Julia Andrusenko/Cognitive Electronic Warfare: An Artificial Intelligence Approach_17302602.pdf
备选标题
Magnetic Sensors and Magnetometers, 2e
备选作者
Haigh, Karen Zita, Andrusenko, Julia
备选作者
Karen Zita Haigh, 1970-
备选作者
Pavel Ripka
备用版本
Artech House electronic warfare library, Boston, 2021
备用版本
United States, United States of America
备用版本
2nd ed., 2021
元数据中的注释
{"edition":"1","isbns":["1630818119","9781630818111"],"last_page":288,"publisher":"Artech House Publishers"}
备用描述
Cognitive Electronic Warfare: An Artificial Intelligence Approach
Contents
Foreword
Preface
1
Introduction to Cognitive EW
1.1 What Makes a Cognitive System?
1.2 A Brief Introduction to EW
1.3 EW Domain Challenges Viewed from an AI Perspective
1.3.1 SA for ES and EW BDA
1.3.2 DM for EA, EP, and EBM
1.3.3 User Requirements
1.3.4 Connection between CR and EW Systems
1.3.5 EW System Design Questions
1.4 Choices: AI or Traditional?
1.5 Reader’s Guide
1.6 Conclusion
References
2
Objective Function
2.1 Observables That Describe the Environment
2.1.1 Clustering Environments
2.2 Control Parameters to Change Behavior
2.3 Metrics to Evaluate Performance
2.4 Creating a Utility Function
2.5 Utility Function Design Considerations
2.6 Conclusion
References
3
ML Primer
3.1 Common ML Algorithms
3.1.1 SVMs
3.1.2 ANNs
3.2 Ensemble Methods
3.3 Hybrid ML
3.4 Open-Set Classification
3.5 Generalization and Meta-learning
3.6 Algorithmic Trade-Offs
3.7 Conclusion
References
4
Electronic Support
4.1 Emitter Classification and Characterization
4.1.1 Feature Engineering and Behavior Characterization
4.1.2 Waveform Classification
4.1.3 SEI
4.2 Performance Estimation
4.3 Multi-Intelligence Data Fusion
4.3.1 Data Fusion Approaches
4.3.2 Example: 5G Multi-INT Data Fusion for Localization
4.3.3 Distributed-Data Fusion
4.4 Anomaly Detection
4.5 Causal Relationships
4.6 Intent Recognition
4.6.1 Automatic Target Recognition and Tracking
4.7 Conclusion
References
5
EP and EA
5.1 Optimization
5.1.1 Multi-Objective Optimization
5.1.2 Searching Through the Performance Landscape
5.1.3 Optimization Metalearning
5.2 Scheduling
5.3 Anytime Algorithms
5.4 Distributed Optimization
5.5 Conclusion
References
6
EBM
6.1 Planning
6.1.1 Planning Basics: Problem Definition, and Search
6.1.2 Hierarchical Task Networks
6.1.3 Action Uncertainty
6.1.4 Information Uncertainty
6.1.5 Temporal Planning and Resource Management
6.1.6 Multiple Timescales
6.2 Game Theory
6.3 HMI
6.4 Conclusion
References
7
Real-Time In-mission Planning and Learning
7.1 Execution Monitoring
7.1.1 EW BDA
7.2 In-Mission Replanning
7.3 In-Mission Learning
7.3.1 Cognitive Architectures
7.3.2 Neural Networks
7.3.3 SVMs
7.3.4 Multiarmed Bandi
7.3.5 MDPs
7.3.6 Deep Q-Learning
7.4 Conclusion
References
8
Data Management
8.1 Data Management Process
8.1.1 Metadata
8.1.2 Semantics
8.1.3 Traceability
8.2 Curation and Bias
8.3 Data Management
8.3.1 Data in an Embedded System
8.3.2 Data Diversity
8.3.3 Data Augmentation
8.3.4 Forgetting
8.3.5 Data Security
8.4 Conclusion
References
9
Architecture
9.1 Software Architecture: Interprocess
9.2 Software Architecture: Intraprocess
9.3 Hardware Choices
9.4 Conclusion
References
10
Test and Evaluation
10.1 Scenario Driver
10.2 Ablation Testing
10.3 Computing Accuracy
10.3.1 Regression and Normalized RMSE
10.3.2 Classification and Confusion Matrices
10.3.3 Evaluating Strategy Performance
10.4 Learning Assurance: Evaluating a Cognitive System
10.4.1 Learning Assurance Process
10.4.2 Formal Verification Methods
10.4.3 Empirical and Semiformal Verification Methods
10.5 Conclusion
References
11
Getting Started: First Steps
11.1 Development Considerations
11.2 Tools and Data
11.2.1 ML Toolkits
11.2.2 ML Datasets
11.2.3 RF Data-Generation Tools
11.3 Conclusion
References
Acronyms
About the Authors
Index
Contents
Foreword
Preface
1
Introduction to Cognitive EW
1.1 What Makes a Cognitive System?
1.2 A Brief Introduction to EW
1.3 EW Domain Challenges Viewed from an AI Perspective
1.3.1 SA for ES and EW BDA
1.3.2 DM for EA, EP, and EBM
1.3.3 User Requirements
1.3.4 Connection between CR and EW Systems
1.3.5 EW System Design Questions
1.4 Choices: AI or Traditional?
1.5 Reader’s Guide
1.6 Conclusion
References
2
Objective Function
2.1 Observables That Describe the Environment
2.1.1 Clustering Environments
2.2 Control Parameters to Change Behavior
2.3 Metrics to Evaluate Performance
2.4 Creating a Utility Function
2.5 Utility Function Design Considerations
2.6 Conclusion
References
3
ML Primer
3.1 Common ML Algorithms
3.1.1 SVMs
3.1.2 ANNs
3.2 Ensemble Methods
3.3 Hybrid ML
3.4 Open-Set Classification
3.5 Generalization and Meta-learning
3.6 Algorithmic Trade-Offs
3.7 Conclusion
References
4
Electronic Support
4.1 Emitter Classification and Characterization
4.1.1 Feature Engineering and Behavior Characterization
4.1.2 Waveform Classification
4.1.3 SEI
4.2 Performance Estimation
4.3 Multi-Intelligence Data Fusion
4.3.1 Data Fusion Approaches
4.3.2 Example: 5G Multi-INT Data Fusion for Localization
4.3.3 Distributed-Data Fusion
4.4 Anomaly Detection
4.5 Causal Relationships
4.6 Intent Recognition
4.6.1 Automatic Target Recognition and Tracking
4.7 Conclusion
References
5
EP and EA
5.1 Optimization
5.1.1 Multi-Objective Optimization
5.1.2 Searching Through the Performance Landscape
5.1.3 Optimization Metalearning
5.2 Scheduling
5.3 Anytime Algorithms
5.4 Distributed Optimization
5.5 Conclusion
References
6
EBM
6.1 Planning
6.1.1 Planning Basics: Problem Definition, and Search
6.1.2 Hierarchical Task Networks
6.1.3 Action Uncertainty
6.1.4 Information Uncertainty
6.1.5 Temporal Planning and Resource Management
6.1.6 Multiple Timescales
6.2 Game Theory
6.3 HMI
6.4 Conclusion
References
7
Real-Time In-mission Planning and Learning
7.1 Execution Monitoring
7.1.1 EW BDA
7.2 In-Mission Replanning
7.3 In-Mission Learning
7.3.1 Cognitive Architectures
7.3.2 Neural Networks
7.3.3 SVMs
7.3.4 Multiarmed Bandi
7.3.5 MDPs
7.3.6 Deep Q-Learning
7.4 Conclusion
References
8
Data Management
8.1 Data Management Process
8.1.1 Metadata
8.1.2 Semantics
8.1.3 Traceability
8.2 Curation and Bias
8.3 Data Management
8.3.1 Data in an Embedded System
8.3.2 Data Diversity
8.3.3 Data Augmentation
8.3.4 Forgetting
8.3.5 Data Security
8.4 Conclusion
References
9
Architecture
9.1 Software Architecture: Interprocess
9.2 Software Architecture: Intraprocess
9.3 Hardware Choices
9.4 Conclusion
References
10
Test and Evaluation
10.1 Scenario Driver
10.2 Ablation Testing
10.3 Computing Accuracy
10.3.1 Regression and Normalized RMSE
10.3.2 Classification and Confusion Matrices
10.3.3 Evaluating Strategy Performance
10.4 Learning Assurance: Evaluating a Cognitive System
10.4.1 Learning Assurance Process
10.4.2 Formal Verification Methods
10.4.3 Empirical and Semiformal Verification Methods
10.5 Conclusion
References
11
Getting Started: First Steps
11.1 Development Considerations
11.2 Tools and Data
11.2.1 ML Toolkits
11.2.2 ML Datasets
11.2.3 RF Data-Generation Tools
11.3 Conclusion
References
Acronyms
About the Authors
Index
开源日期
2021-09-11
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.