Deep Learning Patterns and Practices 🔍
Andrew Ferlitsch Manning Publications Co. LLC, 2020
英语 [en] · EPUB · 20.7MB · 2020 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
Discover best practices, reproducible architectures, and design patterns to help guide deep learning models from the lab into production.
In Deep Learning Patterns and Practices you will learn:
• Internal functioning of modern convolutional neural networks
• Procedural reuse design pattern for CNN architectures
• Models for mobile and IoT devices
• Assembling large-scale model deployments
• Optimizing hyperparameter tuning
• Migrating a model to a production environment
The big challenge of deep learning lies in taking cutting-edge technologies from R&D labs through to production. Deep Learning Patterns and Practices is here to help. This unique guide lays out the latest deep learning insights from author Andrew Ferlitsch’s work with Google Cloud AI. In it, you'll find deep learning models presented in a unique new way: as extendable design patterns you can easily plug-and-play into your software projects. Each valuable technique is presented in a way that's easy to understand and filled with accessible diagrams and code samples.
About the technology
Discover best practices, design patterns, and reproducible architectures that will guide your deep learning projects from the lab into production. This awesome book collects and illuminates the most relevant insights from a decade of real world deep learning experience. You’ll build your skills and confidence with each interesting example.
About the book
Deep Learning Patterns and Practices is a deep dive into building successful deep learning applications. You’ll save hours of trial-and-error by applying proven patterns and practices to your own projects. Tested code samples, real-world examples, and a brilliant narrative style make even complex concepts simple and engaging. Along the way, you’ll get tips for deploying, testing, and maintaining your projects.
What's inside
• Modern convolutional neural networks
• Design pattern for CNN architectures
• Models for mobile and IoT devices
• Large-scale model deployments
• Examples for computer vision
About the reader
For machine learning engineers familiar with Python and deep learning.
About the author
Andrew Ferlitsch is an expert on computer vision, deep learning, and operationalizing ML in production at Google Cloud AI Developer Relations.
备用文件名
lgli/Deep Learning Design Patterns.epub
备用文件名
lgrsnf/Deep Learning Design Patterns.epub
备用文件名
zlib/no-category/Andrew Ferlitsch/Deep Learning Patterns and Practices_21906204.epub
备选标题
Шаблоны и практика глубокого обучения
备选标题
Deep Learning Design Patterns
备选作者
Эндрю Ферлитш; пер. с англ. А. В. Логунова
备选作者
Ferlitsch, Andrew
备选作者
Ферлитш, Эндрю
备用出版商
ДМК Пресс
备用版本
United States, United States of America
备用版本
Shelter Island, NY, 2021
备用版本
Москва, Russia, 2022
备用版本
US, 2021
元数据中的注释
{"isbns":["1617298263","9781617298264"],"last_page":472,"publisher":"Manning Publications"}
元数据中的注释
Предм. указ.: с. 522-537
Пер.: Ferlitsch, Andrew Deep learning patterns and practices Shelter Island : Manning, cop. 2021 978-1-6172-9826-4
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 011140383
=005 20220704172602.0
=008 220609s2022\\\\ru\\\\\\\\\\\\000\0\rus\d
=017 \\ $a 4322-22 $b RuMoRGB
=020 \\ $a 978-5-93700-113-9
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=100 1\ $a Ферлитш, Эндрю
=245 00 $a Шаблоны и практика глубокого обучения $c Эндрю Ферлитш ; пер. с англ. А. В. Логунова
=260 \\ $a Москва $b ДМК Пресс $c 2022
=300 \\ $a 537 с. $b цв. ил. $c 24 см
=336 \\ $a Текст (визуальный)
=337 \\ $a непосредственный
=500 \\ $a Предм. указ.: с. 522-537
=534 \\ $p Пер.: $a Ferlitsch, Andrew $t Deep learning patterns and practices $c Shelter Island : Manning, cop. 2021 $z 978-1-6172-9826-4
=852 \\ $a РГБ $b FB $x 80
备用描述
Discover best practices, reproducible architectures, and design patterns to help guide deep learning models from the lab into production.
In Deep Learning Patterns and Practices you will
Internal functioning of modern convolutional neural networks
Procedural reuse design pattern for CNN architectures
Models for mobile and IoT devices
Assembling large-scale model deployments
Optimizing hyperparameter tuning
Migrating a model to a production environment
The big challenge of deep learning lies in taking cutting-edge technologies from R&D labs through to production. Deep Learning Patterns and Practices is here to help. This unique guide lays out the latest deep learning insights from author Andrew Ferlitschs work with Google Cloud AI. In it, you'll find deep learning models presented in a unique new as extendable design patterns you can easily plug-and-play into your software projects. Each valuable technique is presented in a way that's easy to understand and filled with accessible diagrams and code samples.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the technology
Discover best practices, design patterns, and reproducible architectures that will guide your deep learning projects from the lab into production. This awesome book collects and illuminates the most relevant insights from a decade of real world deep learning experience. Youll build your skills and confidence with each interesting example.
About the book
Deep Learning Patterns and Practices is a deep dive into building successful deep learning applications. Youll save hours of trial-and-error by applying proven patterns and practices to your own projects. Tested code samples, real-world examples, and a brilliant narrative style make even complex concepts simple and engaging. Along the way, youll get tips for deploying, testing, and maintaining your projects.
What's inside
Modern convolutional neural networks
Design pattern for CNN architectures
Models for mobile and IoT devices
Large-scale model deployments
Examples for computer vision
About the reader
For machine learning engineers familiar with Python and deep learning.
About the author
Andrew Ferlitsch is an expert on computer vision, deep learning, and operationalizing ML in production at Google Cloud AI Developer Relations.
Table of Contents
PART 1 DEEP LEARNING FUNDAMENTALS
1 Designing modern machine learning
2 Deep neural networks
3 Convolutional and residual neural networks
4 Training fundamentals
PART 2 BASIC DESIGN PATTERN
5 Procedural design pattern
6 Wide convolutional neural networks
7 Alternative connectivity patterns
8 Mobile convolutional neural networks
9 Autoencoders
PART 3 WORKING WITH PIPELINES
10 Hyperparameter tuning
11 Transfer learning
12 Data distributions
13 Data pipeline
14 Training and deployment pipeline
开源日期
2022-07-08
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。