Predictive Modular Neural Networks: Applications to Time Series (The Springer International Series in Engineering and Computer Science (466)) 🔍
Vassilios Petridis, Athanasios Kehagias (auth.)
Springer US, The Springer International Series in Engineering and Computer Science 466, 1, 1998
英语 [en] · PDF · 11.1MB · 1998 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several "subnetworks" (modules), which may perform the same or re lated tasks, and then use an "appropriate" method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of "lumped" or "monolithic" networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.
Erscheinungsdatum: 11.10.2012
Erscheinungsdatum: 11.10.2012
备用文件名
lgrsnf/A:\compressed\10.1007%2F978-1-4615-5555-1.pdf
备用文件名
nexusstc/Predictive Modular Neural Networks: Applications to Time Series/2ecc1fdca58ae3dfaf87369086cc63b5.pdf
备用文件名
zlib/Engineering/Vassilios Petridis, Athanasios Kehagias (auth.)/Predictive Modular Neural Networks: Applications to Time Series_2092631.pdf
备选作者
by Vassilios Petridis, Athanasios Kehagias
备选作者
Petridis, Vassilios, Kehagias, Athanasios
备用版本
The Springer International Series in Engineering and Computer Science -- 466, International series in engineering and computer science -- 466., Boston, MA, Massachusetts, 1998
备用版本
Softcover reprint of the original 1st ed. 1998, 2012
备用版本
United States, United States of America
备用版本
Springer Nature, New York, NY, 2012
元数据中的注释
lg938753
元数据中的注释
{"edition":"1","isbns":["1461375401","1461555558","9781461375401","9781461555551"],"last_page":314,"publisher":"Springer US","series":"The Springer International Series in Engineering and Computer Science 466"}
元数据中的注释
Online full text is restricted to subscribers.
Also available in print.
Mode of access: World Wide Web.
Also available in print.
Mode of access: World Wide Web.
备用描述
Front Matter....Pages i-xi
Introduction....Pages 1-7
Front Matter....Pages 9-9
Premonn Classification and Prediction....Pages 11-38
Generalizations of the Basic Premonn....Pages 39-57
Mathematical Analysis....Pages 59-80
System Identification by the Predictive Modular Approach....Pages 81-97
Front Matter....Pages 99-99
Implementation Issues....Pages 101-107
Classification of Visually Evoked Responses....Pages 109-122
Prediction of Short Term Electric Loads....Pages 123-133
Parameter Estimation for and Activated Sludge Process....Pages 135-145
Front Matter....Pages 147-147
Source Identification Algorithms....Pages 149-172
Convergence of Parallel Data Allocation....Pages 173-207
Convergence of Serial Data Allocation....Pages 209-245
Front Matter....Pages 247-247
Bibliographic Remarks....Pages 249-266
Epilogue....Pages 267-269
Back Matter....Pages 271-314
Introduction....Pages 1-7
Front Matter....Pages 9-9
Premonn Classification and Prediction....Pages 11-38
Generalizations of the Basic Premonn....Pages 39-57
Mathematical Analysis....Pages 59-80
System Identification by the Predictive Modular Approach....Pages 81-97
Front Matter....Pages 99-99
Implementation Issues....Pages 101-107
Classification of Visually Evoked Responses....Pages 109-122
Prediction of Short Term Electric Loads....Pages 123-133
Parameter Estimation for and Activated Sludge Process....Pages 135-145
Front Matter....Pages 147-147
Source Identification Algorithms....Pages 149-172
Convergence of Parallel Data Allocation....Pages 173-207
Convergence of Serial Data Allocation....Pages 209-245
Front Matter....Pages 247-247
Bibliographic Remarks....Pages 249-266
Epilogue....Pages 267-269
Back Matter....Pages 271-314
备用描述
This book presents a unified methodology for designing modular neural networks. A family of online algorithms for time series classification, prediction and identification are developed; and a rigorous mathematical analysis of their properties is provided. Case studies involving a number of real-world problems are also presented. Finally, an overview of the modular neural networks literature, including coverage of theoretical and experimental analysis, is provided. Predictive Modular Neural Networks: Applications to Time Series is an important reference work for engineers, computer scientists, and other researchers working in time series analysis, neural networks, control engineering, data mining and other intelligent and decision support areas. The book will also be of interest to researchers in biological and medical informatics.
开源日期
2013-08-01
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.