Two-Dimensional Superconductivity in Rare Earth Oxybismuthides with Unusual Valent Bismuth Square Net 🔍
Ryosuke Sei
Springer Nature Singapore Pte Ltd Fka Springer Science + Business Media Singapore Pte Ltd, Springer Theses, 1, 2023
英语 [en] · PDF · 6.8MB · 2023 · 📘 非小说类图书 · 🚀/lgli/lgrs/upload/zlib · Save
描述
Since the discovery of high-temperature superconductivity in cuprates, naturally and artificially layered compounds have attracted great interest to induce fascinating superconductivity with high transition temperature and unconventional pairing mechanisms. Extensive studies have developed this field deeper and wider, resulting in the discovery of a wide variety of novel layered superconductors such as ruthenates, nitride chlorides, LaAlOSubscript 3 3/SrTiOSubscript 3 3 heterostructures, and Fe-based superconductors [ 2– 6]. In this section, I introduce the properties of layered superconductors, especially the cuprate and Fe-based high-temperature superconductors.
备用文件名
lgli/9819973120.pdf
备用文件名
lgrsnf/9819973120.pdf
备用文件名
zlib/no-category/Ryosuke Sei/Two-Dimensional Superconductivity in Rare Earth Oxybismuthides with Unusual Valent Bismuth Square Net_27394449.pdf
备用版本
Springer Nature, Singapore, 2023
备用版本
Singapore, Singapore
备用版本
2024
元数据中的注释
producers:
iTextSharpTM 5.5.14-SNAPSHOT ©2000-2020 iText Group NV (AGPL-version); modified using iTextSharpTM 5.5.14-SNAPSHOT ©2000-2020 iText Group NV (AGPL-version)
iTextSharpTM 5.5.14-SNAPSHOT ©2000-2020 iText Group NV (AGPL-version); modified using iTextSharpTM 5.5.14-SNAPSHOT ©2000-2020 iText Group NV (AGPL-version)
备用描述
Supervisor’s Foreword 6
Acknowledgements 9
Contents 11
1 General Introduction 14
1.1 Layered Superconductors 14
1.1.1 High-Temperature Superconductors 14
1.1.2 Two-Dimensional Superconductivity 15
1.1.3 Complex Phase Diagram 16
1.1.4 Schemes to Search Novel Layered Superconductors 17
1.1.5 Superconductivity in Strong Spin–Orbit Coupled System 18
1.2 Bi Square Net Compounds 19
1.2.1 Crystal Structure 20
1.2.2 Anisotropic Dirac Fermion in Bi Square Net Compounds 24
1.2.3 Kondo Lattice Behavior in CeMBiSubscript 22 26
1.2.4 Potential for Superconducting Bi Square Net 28
1.2.5 Physical Properties of RSubscript 22OSubscript 22Bi (R: rare earth) 29
1.3 Purpose of This Study 31
References 31
2 Experimental Techniques 34
2.1 Sample Preparation 34
2.1.1 Pulsed Laser Deposition 34
2.1.2 Sputtering 34
2.1.3 Vacuum Sealing 36
2.2 Crystallographic Characterization 37
2.2.1 X-Ray Diffraction 37
2.2.2 Rietveld Refinement 38
2.2.3 Atomic Force Microscope 41
2.3 Composition Analysis 42
2.3.1 X-Ray Photoemission Spectroscopy 42
2.3.2 Electron Probe Microanalyzer 43
2.3.3 Inductively Coupled Plasma Mass Spectrometry 44
2.4 Magnetic Measurements 44
2.5 Electrical Measurements 46
2.5.1 Four-Probe Method 46
2.5.2 Hall Measurement 46
2.5.3 Measurement Configuration 47
2.6 Specific Heat Measurements 48
2.6.1 Thermal Relaxation Method 48
2.6.2 Dilution Refrigerator 49
References 50
3 Development of Solid-Phase Epitaxy Techniques 51
3.1 Introduction 51
3.2 Development of Reductive Solid-Phase Epitaxy 53
3.2.1 Experimental 53
3.2.2 Fabrication Results 54
3.2.3 Reaction Mechanism 55
3.2.4 Drawbacks of Reductive Solid-Phase Epitaxy 57
3.3 Development of Multilayer Solid-Phase Epitaxy 57
3.3.1 Experimental 57
3.3.2 Crystal Structure and Valence State of Bi 58
3.3.3 Electronic Transport Properties 61
3.3.4 Onset of Superconductivity 64
3.4 Conclusion 64
References 65
4 Two-Dimensional Superconductivity in Polycrystalline Y2O2Bi 67
4.1 Introduction 67
4.2 Experimental 69
4.3 Crystal Structure 70
4.4 Emergence of Bulk Superconductivity 73
4.4.1 Magnetic Properties 73
4.4.2 Electrical Transport Properties and Two-Dimensional Superconductivity 74
4.4.3 Specific Heat Measurement 76
4.5 Mechanism of Superconductivity 79
4.6 Possible Homologous Series upper Y Subscript n Baseline upper O Subscript n Baseline upper F Subscript n minus 2 Baseline BiYnOnFn-2Bi with Higher Tc 81
4.7 Conclusion 82
References 82
5 Unusual Superconductivity in Tb Subscript 2 Baseline upper O Subscript 2 Baseline BiTb2O2Bi 84
5.1 Introduction 84
5.2 Properties of Pristine Tb2O2Bi 84
5.2.1 Experimental 84
5.2.2 Crystal Structure 85
5.2.3 Physical Properties 86
5.3 Structural Control of Tb2O2Bi 89
5.3.1 Experimental 89
5.3.2 Crystal Structure 91
5.3.3 Physical Properties of F Doped Tb2O2Bi 91
5.3.4 Physical Properties of O Incorporated Tb2O2Bi 96
5.3.5 Complex Phase Diagram 98
5.4 Conclusion 99
References 100
6 Universal Superconductivity in italic upper R Subscript 2 Baseline upper O Subscript 2 Baseline BiR2O2Bi 101
6.1 Introduction 101
6.2 Experimental 101
6.3 Results and Discussion 101
6.4 Conclusion 104
References 104
7 General Conclusion 105
Appendix A Post-Growth of Superconducting Y2O2Bi 107
A.1 Introduction 107
A.2 Experimental 107
A.3 Results and Discussion 108
A.4 Conclusion 110
Appendix B Synthesis of Polycrystalline Dy2O2Bi 111
B.1 Introduction 111
B.2 Experimental 111
B.3 Results and Discussion for Pristine Dy2O2Bi 112
B.4 Results and Discussion for F doped Dy2O2Bi 114
B.5 Results and Discussion for O Incorporated Dy2O2Bi 116
B.6 Conclusion 116
Appendix C Synthesis of Polycrystalline Lu2O2Bi 118
C.1 Introduction 118
C.2 Experimental 118
C.3 Results and Discussion 118
C.4 Conclusion 120
Appendix D Fabrication of Dy2O2Bi Thin Film 121
D.1 Experimental 121
D.2 Crystal Structure 121
D.3 Physical Properties 122
D.4 Conclusion 124
Acknowledgements 9
Contents 11
1 General Introduction 14
1.1 Layered Superconductors 14
1.1.1 High-Temperature Superconductors 14
1.1.2 Two-Dimensional Superconductivity 15
1.1.3 Complex Phase Diagram 16
1.1.4 Schemes to Search Novel Layered Superconductors 17
1.1.5 Superconductivity in Strong Spin–Orbit Coupled System 18
1.2 Bi Square Net Compounds 19
1.2.1 Crystal Structure 20
1.2.2 Anisotropic Dirac Fermion in Bi Square Net Compounds 24
1.2.3 Kondo Lattice Behavior in CeMBiSubscript 22 26
1.2.4 Potential for Superconducting Bi Square Net 28
1.2.5 Physical Properties of RSubscript 22OSubscript 22Bi (R: rare earth) 29
1.3 Purpose of This Study 31
References 31
2 Experimental Techniques 34
2.1 Sample Preparation 34
2.1.1 Pulsed Laser Deposition 34
2.1.2 Sputtering 34
2.1.3 Vacuum Sealing 36
2.2 Crystallographic Characterization 37
2.2.1 X-Ray Diffraction 37
2.2.2 Rietveld Refinement 38
2.2.3 Atomic Force Microscope 41
2.3 Composition Analysis 42
2.3.1 X-Ray Photoemission Spectroscopy 42
2.3.2 Electron Probe Microanalyzer 43
2.3.3 Inductively Coupled Plasma Mass Spectrometry 44
2.4 Magnetic Measurements 44
2.5 Electrical Measurements 46
2.5.1 Four-Probe Method 46
2.5.2 Hall Measurement 46
2.5.3 Measurement Configuration 47
2.6 Specific Heat Measurements 48
2.6.1 Thermal Relaxation Method 48
2.6.2 Dilution Refrigerator 49
References 50
3 Development of Solid-Phase Epitaxy Techniques 51
3.1 Introduction 51
3.2 Development of Reductive Solid-Phase Epitaxy 53
3.2.1 Experimental 53
3.2.2 Fabrication Results 54
3.2.3 Reaction Mechanism 55
3.2.4 Drawbacks of Reductive Solid-Phase Epitaxy 57
3.3 Development of Multilayer Solid-Phase Epitaxy 57
3.3.1 Experimental 57
3.3.2 Crystal Structure and Valence State of Bi 58
3.3.3 Electronic Transport Properties 61
3.3.4 Onset of Superconductivity 64
3.4 Conclusion 64
References 65
4 Two-Dimensional Superconductivity in Polycrystalline Y2O2Bi 67
4.1 Introduction 67
4.2 Experimental 69
4.3 Crystal Structure 70
4.4 Emergence of Bulk Superconductivity 73
4.4.1 Magnetic Properties 73
4.4.2 Electrical Transport Properties and Two-Dimensional Superconductivity 74
4.4.3 Specific Heat Measurement 76
4.5 Mechanism of Superconductivity 79
4.6 Possible Homologous Series upper Y Subscript n Baseline upper O Subscript n Baseline upper F Subscript n minus 2 Baseline BiYnOnFn-2Bi with Higher Tc 81
4.7 Conclusion 82
References 82
5 Unusual Superconductivity in Tb Subscript 2 Baseline upper O Subscript 2 Baseline BiTb2O2Bi 84
5.1 Introduction 84
5.2 Properties of Pristine Tb2O2Bi 84
5.2.1 Experimental 84
5.2.2 Crystal Structure 85
5.2.3 Physical Properties 86
5.3 Structural Control of Tb2O2Bi 89
5.3.1 Experimental 89
5.3.2 Crystal Structure 91
5.3.3 Physical Properties of F Doped Tb2O2Bi 91
5.3.4 Physical Properties of O Incorporated Tb2O2Bi 96
5.3.5 Complex Phase Diagram 98
5.4 Conclusion 99
References 100
6 Universal Superconductivity in italic upper R Subscript 2 Baseline upper O Subscript 2 Baseline BiR2O2Bi 101
6.1 Introduction 101
6.2 Experimental 101
6.3 Results and Discussion 101
6.4 Conclusion 104
References 104
7 General Conclusion 105
Appendix A Post-Growth of Superconducting Y2O2Bi 107
A.1 Introduction 107
A.2 Experimental 107
A.3 Results and Discussion 108
A.4 Conclusion 110
Appendix B Synthesis of Polycrystalline Dy2O2Bi 111
B.1 Introduction 111
B.2 Experimental 111
B.3 Results and Discussion for Pristine Dy2O2Bi 112
B.4 Results and Discussion for F doped Dy2O2Bi 114
B.5 Results and Discussion for O Incorporated Dy2O2Bi 116
B.6 Conclusion 116
Appendix C Synthesis of Polycrystalline Lu2O2Bi 118
C.1 Introduction 118
C.2 Experimental 118
C.3 Results and Discussion 118
C.4 Conclusion 120
Appendix D Fabrication of Dy2O2Bi Thin Film 121
D.1 Experimental 121
D.2 Crystal Structure 121
D.3 Physical Properties 122
D.4 Conclusion 124
备用描述
This book elucidates fascinating electronic phenomena of unusual Bi2-square net in layered R2O2Bi (R: rare earth) compounds using two approaches: the fabrication of epitaxial thin films and the synthesis of bulk polycrystalline powders. The Bi2-square net compounds are a promising platform to explore exotic physical properties originating from the interplay between a two-dimensional electronic state and strong spin–orbit coupling; however, there are few reports on Bi2-square net compounds due to the instability of unusual electronic configurations. The book presents the development of synthetic routes for R2O2Bi compounds, such as novel solid phase epitaxy techniques and chemical control of crystal structure, demonstrating the intrinsic physical properties of Bi2-square net for the first time. The most notable finding is the successful induction of two-dimensional superconductivity in Bi2-square net with the coexistence of rich electronic phases. The book also discusses the superconducting mechanisms and the effect of R cation substitution in detail and describes the mechanical properties of Bi2-square net. These findings overturn the results of previous studies of R2O2Bi. The book sheds light on hidden layered compounds, representing a significant advance in the field.
开源日期
2023-12-28
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.