Tiwari V.K., Jaiswal M.K., Rajkhowa S., Singh S.K. 🔍
Click Chemistry Springer, Materials Horizons: From Nature to Nanomaterials, 2024
英语 [en] · PDF · 39.6MB · 2024 · 📘 非小说类图书 · 🚀/lgli/lgrs · Save
描述
This book comprehensively covers the fundamentals and latest advancements in the area of click chemistry. It discusses notable applications of click chemistry in various emerging areas ranging from chemical biology to catalysis and from medicinal chemistry to material sciences. Various topics covered in this book are catalysis in regioselectivity in click chemistry, organocatalysis in triazole synthesis, Bertozzi’s Bioorthogonal Concept, photo-triggered click chemistry, SuFFEx Click, Thiol-Ene Click, MCR Click, Intramolecular Click Chemistry, synthesis of diverse triazoles and their applications, Click's Post Functionalization, etc. The book is a valuable reference for beginners, researchers and professionals interested in sustainable click concept and its diverse applications in allied fields.
备用文件名
lgrsnf/Tiwari V. Click Chemistry_2024.pdf
备选标题
Click Chemistry
备选作者
Vinod K. Tiwari; Manoj K. Jaiswal; Sanchayita Rajkhowa; Sumit K. Singh
备用版本
Springer Nature, Singapore, 2024
备用描述
Cover
Materials Horizons: From Nature to Nanomaterials Series
Click Chemistry
Copyright
Preface
Contents
About the Authors
Abbreviations
1. Click Chemistry and Bioorthogonal Chemistry: General Consideration from Discovery to Applications
1.1 Introduction
1.2 Sharpless’s Click Chemistry Concept
1.3 Regioselectivity in 1,2,3-Triazole Forming Click Chemistry
1.4 Method of Characterization of 1,4-Disubstituted-1,2,3-Triazole and 1,5-Disubstituted-1,2,3-Triazole
1.5 1,2,3-Triazoles as Isostere of Amides
1.6 Other Important Variants of Click Chemistry (SuFEx, PFEx, Thiol-Ene, Tetrazine-Ene Click)
1.7 Some Notable Features of 1,2,3-Triazole Forming Click
1.8 Conclusions and Future Perspective
References
2. CuAAC ‘Click Chemistry’-Mediated Synthesis of 1,4-Disubstituted 1,2,3-Triazoles
2.1 Introduction
2.2 CuAAC Catalysis and Common Additives
2.3 Plausible Mechanism of CuAAC ‘Click Chemistry’
2.4 NMR Spectroscopy-Based Characterization of 1,2,3-Triazoles
2.5 Various Representative Synthetic Approaches for CuAAC-Mediated 1,4-Disubstituted 1,2,3-Triazoles
2.6 Conclusions and Future Outlook
References
3. RuAAC ‘Click Chemistry’-Mediated Synthesis of 1,5-Disubstituted 1,2,3-Triazoles
3.1 Introduction
3.2 Ru-Catalyzed Synthesis of 1,5-Substituted 1,2,3-Triazoles
3.2.1 RuAAC-Mediated Click Chemistry: Catalysis and Mechanism
3.2.2 RuAAC-Mediated Synthesis of 1,5-Disubstituted 1,2,3-Triazoles
3.2.3 1,5-Disubstituted 1,2,3-Triazoles as Mimetic of cis-Amide Peptidomimetics
3.2.4 RuAAC-Mediated 1,5-Disubstituted 1,2,3-Triazoles in Peptide Side-Chain Mimetics
3.2.5 RuAAC-Mediated Regioselective 1,5-Disubstituted 1,2,3-Triazole in Macrocycles
3.2.6 RuAAC-Mediated 1,5-Disubstituted 1,2,3-Triazoles in Nucleoside/Nucleotide Analogues and Glycomimetics
3.2.7 RuAAC-Mediated 1,5-Disubstituted 1,2,3-Triazoles in Catalysis and in Synthesis of Bioactive Molecule
3.3 Conclusions and Future Outlook
References
4. Organocatalyzed 1,2,3-Triazoles Forming Click Chemistry
4.1 Introduction
4.2 The Organocatalyzed Synthesis of Functionalized 1,2,3-Triazoles
4.2.1 Synthesis of 1,2,3-Triazole Through Iminium-Based Reactions
4.2.2 Synthesis of 1,2,3-Triazole Through Enamine/Dienamine-Based Reactions
4.2.3 Synthesis of 1,2,3-Triazole Through Enolate-Based Chemical Reactions
4.2.4 Synthesis of 1,2,3-Triazole Through Acetylide-Based Intermediate
4.2.5 Triazoles Via Miscellaneous Chemical Reaction
4.3 Conclusions and Future Outlook
References
5. Catalyst-Free Thermally Induced 1,2,3-Triazole Forming Approaches
5.1 Introduction
5.2 Greener 1,2,3-Triazoles Catalyst-Free Approaches
5.3 Synthesis of 1,2,3-Triazoles Via Topochemical Azide-Alkyne Cycloaddition Reactions
5.4 Synthesis of Cyclic and Fused 1,2,3-Triazolyl Compounds
5.5 Conclusions and Future Outlook
References
6. Bioorthogonal Click Chemistry: Invention to Applications in Living Systems
6.1 Introduction
6.2 Staudinger Ligation
6.3 Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC) Ligation
6.4 Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC) Reaction: Copper-Free Click Chemistry
6.5 Tetrazine Ligation ‘Inverse-Electron-Demand Diels–Alder Cycloaddition Reaction’
6.6 Conclusions and Future Perspective
References
7. Thiol-Ene ‘Click Chemistry’: Discovery to Applications
7.1 Introduction
7.2 Catalysis and Mechanism of Thiol-Ene and Thiol-Yne Click
7.3 Applications of Thiol-Ene and Thiol-Yne in Organic Synthesis
7.4 Conclusions and Future Perspective
References
8. SuFEx Click Chemistry: Discovery to Applications
8.1 Introduction
8.1.1 Historic Development of SuFEx Connectors and SuFExable Molecular Plugins
8.1.2 Background and Historical Development
8.1.3 SuFEx Activation and Catalysis
8.2 Synthesis of SuFEx Connectors and SuFExable Molecular Plugins
8.2.1 Alkyl Sulfonyl Fluorides (RSO2F) and Aryl Sulfonyl Fluorides (Ar-SO2F)
8.2.2 Sulfuryl Fluoride (SO2F2)
8.2.3 Sulfuryl Fluoride Surrogates
8.2.4 Thionyl Tetrafluoride SOF4
8.2.5 Ethene Sulfonyl Fluoride (ESF)
8.2.6 1-Bromoethene-1-Sulfonyl Fluoride (BESF)
8.3 Application of SuFEx Click Chemistry in Organic Synthesis
8.3.1 Installation of SuFEx Building Blocks
8.4 Application of SuFEx Building Blocks as Chemical Tools
8.5 Application of SuFEx Click Chemistry in Drug Discovery Endeavors
8.6 Application of SuFEx Click Chemistry in Material Science
8.7 Conclusion and Future Outlook
References
9. CuAAC ‘Click Chemistry’ in Synthesis of Peptides and Protein Conjugates
9.1 Introduction
9.2 CuAAC Click-Inspired Peptide and Glycopeptide Conjugation Strategies
9.3 Conclusions and Future Outlook
References
10. Click Chemistry in Dendrimer Synthesis
10.1 Introduction
10.2 Classification of Dendrimers on the Basis of Their Linkages
10.2.1 Classification on the Basis of Occurrence of Sugar Residue
10.2.2 Modern Method to Construct Dendritic Architectures
10.3 CuAAC Click-Mediated Construction of Diverse Dendrimer and Glycodendrimer Architectures
10.4 Conclusions and Future Outlook
References
11. Click Chemistry in Polymer Science
11.1 Introduction
11.2 1,2,3-Triazole-Linked Glycopolymer
11.3 1,2,3-Triazole-Appended Glycopolymers
11.4 Conclusions and Future Perspectives
References
12. Click Chemistry in Lipid Modification
12.1 Introduction
12.2 Click Chemistry for the Functionalization of Membrane Surface
12.3 Click Chemistry in the Synthesis of Functionalized Lipid Analogues
12.4 Conclusions and Future Perspective
References
13. CuAAC ‘Click’ in Carbohydrate Chemistry
13.1 Introduction
13.2 Preparation of Carbohydrate-Based Azide and Alkynes for CuAAC Click Coupling
13.3 Cu-Catalyzed ‘Click Chemistry’ for Easy Access to Diverse 1,2,3-Triazole-Linked Glycohybrids and Glycoconjugates
13.4 Conclusions and Future Perspective
References
14. Click Chemistry in Nucleic Acids
14.1 Introduction
14.2 CuAAC ‘Click’ for the Chemical Modification of Nucleosides
14.3 Click-Mediated Biocompatible 1,2,3-Triazole as Alternative Phosphate Linkage in DNA
14.4 Click Chemistry-Inspired Glycan Microarrays in DNA Technology
14.5 Click Chemistry-Inspired Bioactive 1,2,3-Triazole-Appended Nucleoside Analogues
14.6 Click Chemistry-Inspired Triazole-Linked Nucleosides as Radio Tracer Agents
14.7 Cellular Metabolic Labeling of Nucleic Acids (DNA and RNA)
14.8 CuAAC in Assembling of Nucleic Acid
14.9 Conclusions and Future Perspective
References
15. Growing Opportunities of Click Chemistry in Drug Development
15.1 Introduction
15.2 Importance of 1,2,3-Triazole Scaffolding in Medicinal Chemistry
15.3 1,2,3-Triazole Hybrids as Anti-diabetic Agents
15.4 1,2,3-Triazole Hybrids and Conjugates as Anti-cancer Agents
15.5 1,2,3-Triazole Hybrids and Conjugates as Anti-viral Agents
15.6 1,2,3-Triazoles as Anti-tubercular Agents
15.7 1,2,3-Triazoles as Antibacterial Agents
15.8 1,2,3-Triazoles as Anti-leishmanial Activity
15.9 1,2,3-Triazoles as Potential Lead Candidates for Miscellaneous Activities
15.10 1,2,3-Triazole-Appended Conjugates as Multivalency Effect Through Statistical Rebinding
15.11 Conclusions and Future Perspectives
References
16. Click-Mediated 1,2,3-Triazoles in Catalysis
16.1 Introduction
16.2 Triazole as Ligand in Metal-Catalyzed Reactions
16.2.1 Click-Derived Triazole/Cu-Assisted Catalysis
16.2.2 Click-Derived Triazole/Pd-Assisted Catalysis
16.2.3 Click-Derived Triazole/Ni-Assisted Catalysis
16.2.4 Click-Derived Mn/Triazole-Assisted Catalysis
16.2.5 Click-Derived Ru/Triazole-Assisted Catalysis
16.2.6 Click-Derived Fe/Triazole-Assisted Catalysis
16.2.7 Click-Derived Au/Triazole-Assisted Catalysis
16.2.8 Click-Derived Rh or Ir/Triazole-Assisted Catalysis
16.3 Triazole-Based Organocatalyzed Reactions
16.4 Conclusions and Future Outlook
References
17. Intramolecular Click Chemistry in Organic Synthesis
17.1 Introduction
17.2 CuAAC-Mediated Intramolecular Click Chemistry
17.3 RuAAC-Mediated Intramolecular Click Chemistry
17.3.1 Thermally Induced Intramolecular Click of Diverse Azido-Alkyne Scaffolds
17.4 Conclusions and Future Outlook
References
18. Tandem/MCR Click Chemistry in Organic Synthesis
18.1 Introduction
18.2 Application of MCR in Click Chemistry
18.2.1 Synthesis of 1,2,3-Triazole-Appended Hybrid Scaffolds
18.2.2 Synthesis of 1,2,3-Triazole-Containing Macrocycles
18.2.3 Synthesis of Glycohybrid 1,2,3-Triazoles
18.3 MCR Click Under Multicatalytic Condition
18.4 Miscellaneous Reactions
18.5 Conclusion and Future Perspectives
References
19. Post-functionalization of Click-Derived 1,2,3-Triazoles
19.1 Introduction
19.2 Application of Post-modification Strategy in Modern Organic Synthesis
19.3 Synthetic Approaches for the Construction of 5-Heterofunctionalized 1,2,3-Triazole
19.3.1 Sulfenylation, Selenylation, and Amination Reactions
19.3.2 Miscellaneous Reactions
19.3.3 Synthesis of Biologically Relevant Sugar Triazoles
19.4 Conclusions and Future Perspective
References
开源日期
2024-07-21
更多信息……
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。