Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Lecture Notes in Physics Monographs, 54) 🔍
Yasuyuki Suzuki, Kálmán Varga Springer Berlin, Lecture notes in physics., New series m,, Monographs ;, m54, 1, 1998
英语 [en] · DJVU · 3.3MB · 1998 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
The quantum-mechanical few-body problem is of fundamental importance for all branches of microphysics and it has substantially broadened with the advent of modern computers. This book gives a simple, unified recipe to obtain precise solutions to virtually any few-body bound-state problem and presents its application to various problems in atomic, molecular, nuclear, subnuclear and solid state physics. The main ingredients of the methodology are a wave-function expansion in terms of correlated Gaussians and an optimization of the variational trial function by stochastic sampling. The book is written for physicists and, especially, for graduate students interested in quantum few-body physics.
备用文件名
lgrsnf/P_Physics/Pln_Lecture notes/Suzuki Y., Varga K. Stochastic variational approach to quantum-mechanical few-body problems (LNPm054, Springer, 1998)(ISBN 3540651527)(400dpi)(S)(T)(O)(319s).djvu
备用文件名
nexusstc/Stochastic variational approach to quantum-mechanical few-body problems/655244e49bc80e420af7027b35c0f80b.djvu
备用文件名
zlib/Physics/Yasuyuki Suzuki; Kalman Varga/Stochastic variational approach to quantum-mechanical few-body problems_2066417.djvu
备选标题
Stochastic Variational Approach to Quantum-Mechanical Few- Body Problems (Lecture Notes in Physics)
备选作者
Suzuki, Yasuyuki, Varga, Kalman
备选作者
Yasuyuki Suzuki, Kálmán Varga
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用版本
Lecture notes in physics., m54, Berlin, New York, Germany, 1998
备用版本
Lecture notes in physics, m 54, Berlin, ©1998
备用版本
Springer Nature, Berlin, Heidelberg, 2003
备用版本
Berlin [etc, cop. 1998
备用版本
Germany, Germany
备用版本
1998, FR, 1998
元数据中的注释
Kolxo3 -- 61-62
元数据中的注释
lg912030
元数据中的注释
{"edition":"1","isbns":["3540651527","9783540651529"],"last_page":319,"publisher":"Springer","series":"Lecture notes in physics., New series m,, Monographs ;, m54"}
元数据中的注释
Includes bibliographical references (p. [299]-305)and index.
备用描述
Lecture Notes in Physics: Monographs 54 ......Page 2
Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems ......Page 4
Table of Contents ......Page 6
1. Introduction ......Page 10
2.1 Hamiltonian ......Page 16
2.2 RelatiVe coordinates ......Page 18
2.3 Symmetrization ......Page 24
2.4 Permutation of the Jacobi coordinates ......Page 25
2.1 An N-particle Hamiltonian in the heavy-particle center coordinate set ......Page 27
2.2 Canonical Jacobi coordinates ......Page 28
3.1 Variational principles ......Page 30
3.2 The variance of local energy ......Page 39
3.3 The virial theorem ......Page 42
4.1 Basis optimization ......Page 48
4.2 A practical example ......Page 52
4.2.1 Geometric progression ......Page 53
4.2.3 Random basis ......Page 56
4.2.5 Trial and error search ......Page 59
4.2.6 Refining ......Page 62
4.2.7 Comparison of different optimizing strategies ......Page 63
4.3 Optimization for excited states ......Page 65
4.1 Minimization of energy versus variance ......Page 70
5.1 Quantum Monte Carlo method: The imaginary-time evolution of a system ......Page 74
5.2 Hyperspherical harmonics expansion method ......Page 76
5.3 Faddeev method ......Page 79
5.4 The generator coordinate method ......Page 81
6.1 Correlated Gaussians and correlated Gaussian-type geminals ......Page 84
6.2 Orbital functions with arbitrary angular momentum ......Page 91
6.3 Generating function ......Page 96
6.4 The spin fanction ......Page 103
6.1 Nodeless harmonic-oscillator functions as a basis ......Page 105
6.3 Angular momentum recoupling ......Page 115
6.4 Separation of the center-of-mass motion from correlated Gaussians ......Page 121
6.6 Four electrons in an arbitrary spin arrangement ......Page 124
6.7 Six electrons with S = 0 ......Page 125
Exercises ......Page 127
7.1 Matrix elements of the generating function ......Page 132
7.2 Correlated Gaussians ......Page 134
7.3 Correlated Gaussians in two-dimensional systems ......Page 138
7.4 Correlated Gaussian-type geminals ......Page 140
7.5 Nonlocal potentials ......Page 143
7.6 Semirelativistic kinetic energy ......Page 146
7. 1 Sherman-MorTison fonnula ......Page 152
Exercises ......Page 154
8.1 Coulombic systems ......Page 158
8.2 Coulombic three-body systems ......Page 159
8.3 Four or more particles ......Page 163
8.4 Small molecules ......Page 174
8.1 The cusp condition for the Coulomb potential ......Page 176
8.2 The chemical bond. The H^+_2 ion ......Page 178
8.3 Stability of hydrogen-like molecules ......Page 181
8.4 Application of global vectors to muonic molecules ......Page 183
9. Baryon spectroscopy ......Page 186
9.2 One-gluon exchange model ......Page 187
9.3 Meson-exchange model ......Page 190
10. Few-body problems in solid state physics ......Page 196
10.1 Excitonic complexes ......Page 197
10.2 Quantum dots ......Page 200
10.3 Quantum dots in magnetic field ......Page 205
10.4 Quantum dots in the generator coordinate method ......Page 211
10.1 Two-dimensional electron motion in a magnetic field ......Page 213
11.1 Introductory remark on nucleon-nucleon potentials ......Page 222
11.2 Few-nucleon systems with central forces ......Page 225
11.1 Correlations in few-nucleon systems ......Page 239
11-3 Quark Pauli effect in s-shell A hypernuclei ......Page 248
11.4 The 12C nucleus as a system of three alpha-particles ......Page 251
11.2 Convergence of partial-wave expansions ......Page 242
A.1.1 Overlap of the basis functions ......Page 256
A.1.2 Kinetic energy ......Page 258
A.1.3 Two-body interactions ......Page 259
A.1.4 Density multipole operators ......Page 265
A.2 Correlated Gaussians with different coordinate sets ......Page 266
A.3 Correlated Gaussian-type geminals ......Page 271
A.4 Spin matrix elements ......Page 272
A.5 Three-body problem with central, tensor and spin-orbit forces ......Page 274
A.I Matrix elements o central potentials ......Page 289
A.2 Matrix elements of density multipoles ......Page 292
A.3 Overlap matrix elements of the correlated Gaussians for a threeparticle system ......Page 294
Exercises ......Page 297
References ......Page 308
Index ......Page 316
备用描述
There countlessnumberof of few area examples quantum mechanical constituent in subnuclear few nucleon quarks physics, or few cluster in nuclear smallatomsandmolecules physics, systems inatomic few electron dots insolidstate or physics quantum physics, Theintricatefeatureofthe isthat etc. few bodysystems theydevelop individual characters thenumber ofconstituent on depending parti cles.Themesonsand the andthe'Li alpha particle baryons, nucleus, theHeatomandtheBeatom have different or very physicalproper ties.Themost ofthesedifferences thecorrelated importantcauses are motion and the Pauli This principle. individuality requires specific for the solution of methods the few body Schr6dinger Ap equation. solutions whichassumerestrictedmodel mean proximate field, spaces, failto describethebehavior ofthe etc. few bodysystems. The ofthisbook is showhow find the the to to and goal energy functionof in unified wave a few particlesystem simple, approach. any The will be intheminimum state. system normally quantum energy As to findthis the is forewarned, however, acom state, groundstate, matter. The ofthe of plicated development present stage computer makesa technology,however, very Without forthe state a information ground by "gambling". priori any the true random on states are ground state, completely generated. Providedthattherandom states after series of axe a generalenough, trials findsthe statein Thereader one a ground goodapproximation. findthis little there indeed a but are anumberoffine suspicious may in the trial and which makes the tricks error whole idea procedure reallypracticable. Before the reader with let us bombarding sophisticated details, demonstrate therandom search with an Let us to de example.
备用描述
<p>The quantum-mechanical few-body problem is of fundamental importance for all branches of microphysics and it has substantially broadened with the advent of modern computers. This book gives a simple, unified recipe to obtain precise solutions to virtually any few-body bound-state problem and presents its application to various problems in atomic, molecular, nuclear, subnuclear and solid state physics. The main ingredients of the methodology are a wave-function expansion in terms of correlated Gaussians and an optimization of the variational trial function by shastic sampling. The book is written for physicists and, especially, for graduate students interested in quantum few-body physics.</p>
备用描述
This book gives a simple, unified recipe to obtain precise solutions to virtually any few-body bound state problem and presents its application to various problems in atomic, molecular, nuclear, subnuclear and solid state physics.
开源日期
2013-04-15
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。