Partial Differential Equations VII: Spectral Theory of Differential Operators (Encyclopaedia of Mathematical Sciences (64)) 🔍
G. V. Rozenblum, M. A. Shubin, M. Z. Solomyak (auth.), M. A. Shubin (eds.) Springer-Verlag Berlin Heidelberg, Encyclopaedia of Mathematical Sciences, Encyclopaedia of Mathematical Sciences 64, 7, 1, 1994
英语 [en] · DJVU · 1.9MB · 1994 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/scihub/zlib · Save
描述
§18 Operators with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . 186 18. 1. General Definitions. Essential Self-Adjointness . . . . . . . . . . . . 186 18. 2. General Properties of the Spectrum and Eigenfunctions . . . . 188 18. 3. The Spectrum of the One-Dimensional Schrödinger Operator with an Almost Periodic Potential . . . . . . . . . . . . . . 192 18. 4. The Density of States of an Operator with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 18. 5. Interpretation of the Density of States with the Aid of von Neumann Aigebras and Its Properties . . . . . . . . . . . . . . 199 §19 Operators with Random Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 206 19. 1. Translation Homogeneous Random Fields . . . . . . . . . . . . . . . . . 207 19. 2. Random DifferentialOperators . . . . . . . . . . . . . . . . . . . . . . . . . . 212 19. 3. Essential Self-Adjointness and Spectra . . . . . . . . . . . . . . . . . . . 214 19. 4. Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 19. 5. The Character of the Spectrum. Anderson Localization 220 §20 Non-Self-Adjoint Differential Operators that Are Close to Self-Adjoint Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 2. Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 20. 3. Completeness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 20. 4. Expansion and Summability Theorems. Asymptotic Behaviour of the Spectrum . . . . . . . . . . . . . . . . . . . 228 20. 5. Application to DifferentialOperators . . . . . . . . . . . . . . . . . . . . . 230 Comments on the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Author Index 262 Subject Index 265 Preface The spectral theory of operators in a finite-dimensional space first appeared in connection with the description of the frequencies of small vibrations of me­ chanical systems (see Arnol'd et al. 1985). When the vibrations of astring are considered, there arises a simple eigenvalue problem for a differential opera­ tor. In the case of a homogeneous string it suffices to use the classical theory 6 Preface of Fourier series.
备用文件名
lgrsnf/M_Mathematics/MRef_References/MRv_VINITI/Partial differential equations 07 (EMS64, Springer, 1994)(ISBN 3540546774)(KA)(T)(270s)_MRv_.djvu
备用文件名
nexusstc/Partial Differential Equations VII/6ced4b34029b3e928759aa1aac537297.djvu
备用文件名
scihub/10.1007/978-3-662-06719-2.pdf
备用文件名
zlib/Computers/Computer Science/G. V. Rozenblum, M. A. Shubin, M. Z. Solomyak (auth.), M. A. Shubin (eds.)/Partial Differential Equations VII: Spectral Theory of Differential Operators_446861.djvu
备选作者
M. A. Shubin, T. Zastawniak, G. V. Rozenblum, M. Z. Solomyak
备选作者
Shubin, M. a., Zastawniak, T., Rozenblum, G. V.
备选作者
M. A Shubin; G. V Rozenblum; Margarita Solomyak
备选作者
I︠U︡. V Egorov; M. A Shubin
备选作者
M. A Shubin; Yu V Egorov
备用出版商
Spektrum Akademischer Verlag. in Springer-Verlag GmbH
备用出版商
Springer Berlin Heidelberg : Imprint : Springer
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用版本
Encyclopaedia of mathematical sciences, v. 30, <31-33, 63-64>, Berlin ; New York, ©1991-<c1994>
备用版本
Encyclopaedia of mathematical sciences, 64, Berlin, Heidelberg, 1994
备用版本
Encyclopaedia of Mathematical Sciences 64, Part 7, 1, 1994
备用版本
Encyclopaedia of mathematical sciences, 64, Berlin, 2011
备用版本
Encyclopaedia of mathematical sciences, Berlin, ©2010
备用版本
Springer Nature, Berlin, Heidelberg, 2013
备用版本
1 edition, December 27, 1994
备用版本
Germany, Germany
元数据中的注释
Kolxo3 -- 23
元数据中的注释
sm40107197
元数据中的注释
{"container_title":"Encyclopaedia of Mathematical Sciences","edition":"1","isbns":["3540546774","3642081169","3662067196","9783540546771","9783642081163","9783662067192"],"issns":["0938-0396"],"last_page":274,"publisher":"Springer","series":"Encyclopaedia of Mathematical Sciences 64","volume":"7"}
备用描述
§18 Operators with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . 186 18. 1. General Definitions. Essential Self-Adjointness . . . . . . . . . . . . 186 18. 2. General Properties of the Spectrum and Eigenfunctions . . . . 188 18. 3. The Spectrum of the One-Dimensional Schrödinger Operator with an Almost Periodic Potential . . . . . . . . . . . . . . 192 18. 4. The Density of States of an Operator with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 18. 5. Interpretation of the Density of States with the Aid of von Neumann Aigebras and Its Properties . . . . . . . . . . . . . . 199 §19 Operators with Random Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 206 19. 1. Translation Homogeneous Random Fields . . . . . . . . . . . . . . . . . 207 19. 2. Random DifferentialOperators . . . . . . . . . . . . . . . . . . . . . . . . . . 212 19. 3. Essential Self-Adjointness and Spectra . . . . . . . . . . . . . . . . . . . 214 19. 4. Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 19. 5. The Character of the Spectrum. Anderson Localization 220 §20 Non-Self-Adjoint Differential Operators that Are Close to Self-Adjoint Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 2. Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 20. 3. Completeness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 20. 4. Expansion and Summability Theorems. Asymptotic Behaviour of the Spectrum . . . . . . . . . . . . . . . . . . . 228 20.5. Application to DifferentialOperators . . . . . . . . . . . . . . . . . . . . . 230 Comments on the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Author Index 262 Subject Index 265 Preface The spectral theory of operators in a finite-dimensional space first appeared in connection with the description of the frequencies of small vibrations of me chanical systems (see Arnol'd et al. 1985). When the vibrations of astring are considered, there arises a simple eigenvalue problem for a differential opera tor. In the case of a homogeneous string it suffices to use the classical theory 6 Preface of Fourier series.
Erscheinungsdatum: 06.12.2010
备用描述
§18 Operators with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . 186 18. 1. General Definitions. Essential Self-Adjointness . . . . . . . . . . . . 186 18. 2. General Properties of the Spectrum and Eigenfunctions . . . . 188 18. 3. The Spectrum of the One-Dimensional Schrödinger Operator with an Almost Periodic Potential . . . . . . . . . . . . . . 192 18. 4. The Density of States of an Operator with Almost Periodic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 18. 5. Interpretation of the Density of States with the Aid of von Neumann Aigebras and Its Properties . . . . . . . . . . . . . . 199 §19 Operators with Random Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 206 19. 1. Translation Homogeneous Random Fields . . . . . . . . . . . . . . . . . 207 19. 2. Random DifferentialOperators . . . . . . . . . . . . . . . . . . . . . . . . . . 212 19. 3. Essential Self-Adjointness and Spectra . . . . . . . . . . . . . . . . . . . 214 19. 4. Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 19. 5. The Character of the Spectrum. Anderson Localization 220 §20 Non-Self-Adjoint Differential Operators that Are Close to Self-Adjoint Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 1. Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 20. 2. Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 20. 3. Completeness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 20. 4. Expansion and Summability Theorems. Asymptotic Behaviour of the Spectrum . . . . . . . . . . . . . . . . . . . 228 20.5. Application to DifferentialOperators . . . . . . . . . . . . . . . . . . . . . 230 Comments on the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Author Index 262 Subject Index 265 Preface The spectral theory of operators in a finite-dimensional space first appeared in connection with the description of the frequencies of small vibrations of me chanical systems (see Arnol'd et al. 1985). When the vibrations of astring are considered, there arises a simple eigenvalue problem for a differential opera tor. In the case of a homogeneous string it suffices to use the classical theory 6 Preface of Fourier series.
Erscheinungsdatum: 14.12.1994
备用描述
ʹ18 Operators with Almost Periodic Coefficients ... ... ... . 186 18. 1. General Definitions. Essential Self-Adjointness ... ... 186 18. 2. General Properties of the Spectrum and Eigenfunctions ... 188 18. 3. The Spectrum of the One-Dimensional Schrödinger Operator with an Almost Periodic Potential ... ... . . 192 18. 4. The Density of States of an Operator with Almost Periodic Coefficients ... ... ... ... ... ... ... . 197 18. 5. Interpretation of the Density of States with the Aid of von Neumann Aigebras and Its Properties ... ... . . 199 ʹ19 Operators with Random Coefficients ... ... ... ... . . 206 19. 1. Translation Homogeneous Random Fields ... ... ... . 207 19. 2. Random DifferentialOperators ... ... ... ... . . 212 19. 3. Essential Self-Adjointness and Spectra ... ... ... . 214 19. 4. Density of States ... ... ... ... ... ... . . 217 19. 5. The Character of the Spectrum. Anderson Localization 220 ʹ20 Non-Self-Adjoint Differential Operators that Are Close to Self-Adjoint Ones ... ... ... ... ... ... ... 222 20. 1. Preliminary Remarks ... ... ... ... ... ... 222 20. 2. Basic Examples ... ... ... ... ... ... ... 225 20. 3. Completeness Theorems ... ... ... ... ... . . 226 20. 4. Expansion and Summability Theorems. Asymptotic Behaviour of the Spectrum ... ... ... . 228 20. 5. Application to DifferentialOperators ... ... ... ... 230 Comments on the Literature ... ... ... ... ... ... . 234 References ... ... ... ... ... ... ... ... ... 236 Author Index 262 Subject Index 265 Preface The spectral theory of operators in a finite-dimensional space first appeared in connection with the description of the frequencies of small vibrations of meƯ chanical systems (see Arnol'd et al. 1985). When the vibrations of astring are considered, there arises a simple eigenvalue problem for a differential operaƯ tor. In the case of a homogeneous string it suffices to use the classical theory 6 Preface of Fourier series
备用描述
This EMS volume contains a survey of the principles and advanced techniques of the spectral theory of linear differential and pseudodifferential operators in finite-dimensional spaces. The basic notions and theorems are first reviewed and followed by a comprehensive presentation of a variety of advanced approaches such as the factorization method, the variational techniques, the approximate spectral projection method, and the probabilistic method, to name a few. Special attention is devoted to the spectral properties of Schrödinger and Dirac operators and of other operators as well. In addition, a special section of Sunada's recent solution of Kac's celebrated problem of whether or not "one can hear the shape of a drum" is included.
备用描述
This volume of the "Encyclopaedia of Mathematical Sciences" presents an introduction to the classical theory of partial differential equations which emphasizes physical methods and physical interpretations. Topics discussed include spectral theory, planar waves and the theory of semigroups.
备用描述
The language of the general theory of operators (mainly unbounded ones) in a Hubert space is systematically used in the spectral theory of differential operators.
备用描述
Front Matter....Pages i-v
Spectral Theory of Differential Operators....Pages 1-235
Back Matter....Pages 236-274
开源日期
2009-07-20
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。