Handbook of Graphene, Volume 1 : Growth, Synthesis, and Functionalization 🔍
Tiwari, Ashutosh(Editor) John Wiley & Sons, Inc. ; Scrivener Publishing, LLC, John Wiley & Sons, Inc., [Place of publication not identified], 2019
英语 [en] · PDF · 20.8MB · 2019 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
描述
Handbook of Graphene, Volume 1, essentially focuses on graphene growth, synthesis, and functionalization in order to realize optimized graphene-based nanostructures which can be utilized for various applications. This handbook provides detailed and up-to-date overviews of the synthesis and functionalization of graphene on various substrates (metallic and semiconducting), their properties and possible application methods. In particular, the chapters cover:
- Optimization of graphene growth and challenges for synthesis of high-quality graphene and graphite in metallic materials;
- Exfoliation of graphene sheets obtained by sonication, ball milling and use of polymers and surfactants;
- Structure, electronic properties, functionalization methods, and prospects of epitaxial graphene grown on hexagonal and cubic silicon carbide substrates;
- Growth of graphene on Si(111) wafers via direct deposition of solid-state carbon atom and characterization of graphene-on-silicon films;
- Chemical reactivity and modification of electronical properties of graphene grown on Ni(111);
- Enhancement of the cell wall strength and stability of foam structure utilizing graphene;
- Influence of applied strain and magnetic field on the electronic and transport properties of graphene with different kinds of defects;
- Application of hydrogen functionalized graphene in spintronic nanodevices;
- Electrochemistry and catalytic properties of graphene-based materials;
- Functionalization of graphene with molecules and/or nanoparticles for advanced applications such as flexible electronics, biological systems, ink-jet applications and coatings;
- Graphene-based composite materials devoted to electrochemical applications such as supercapacitors, lithium ion batteries and electrode material;
- Three-dimensional graphene-based structures which preserve the intrinsic properties of 2D graphene and provide advanced functionalities with desired characteristics in a wide range of applications such as sensors, batteries, supercapacitors, fuel cells, etc.;
- Carbon allotropes between diamond and graphite, which allow creating semiconductor properties in graphene and related structures.
The 18 chapters of this handbook represent deep and very stimulating contributions to the processes of growth, synthesis and functionalization of graphene for several potential applications.
This book is intended for students and active researchers in the field of graphene who are currently investigating the fundamental properties of this amazing low-dimensional material and its applications in micro- and nanotechnologies. It is also necessary reading for entrepreneurs and industrialists because it discusses a variety of possible applications of graphene and different ways of improving the quality of synthesized graphene.
备用文件名
lgli/N:\!genesis_files_for_add\_add\062020\wiley\Handbook of Graphene, Volume 1.pdf
备用文件名
lgrsnf/N:\!genesis_files_for_add\_add\062020\wiley\Handbook of Graphene, Volume 1.pdf
备用文件名
nexusstc/Handbook of Graphene, Volume 1: Growth, Synthesis, and Functionalization/73908b0ec727b0980cbf95872defaaed.pdf
备用文件名
zlib/Engineering/Tiwari, Ashutosh(Editor)/Handbook of Graphene, Volume 1: Growth, Synthesis, and Functionalization_11038171.pdf
备选标题
HANDBOOK OF GRAPHENE MATERIALS
备选作者
Edvige Celasco; Alexander N Chaika; Tobias Stauber; Mei Zhang; Cengiz S Ozkan; Umit S Ozkan; Barbara Palys; Sulaiman Wadi Harun
备选作者
Adobe InDesign CC 2015 (Windows)
备选作者
Ashutosh Tiwari
备用出版商
John Wiley & Sons, Incorporated
备用出版商
American Geophysical Union
备用出版商
Wiley-Blackwell
备用版本
Place of publication not identified, 2018
备用版本
United States, United States of America
备用版本
Hoboken, NJ, Beverly, MA, 2019
备用版本
Jul 02, 2019
备用版本
1, 2019
元数据中的注释
lg2865499
元数据中的注释
producers:
Acrobat Distiller 9.0.0 (Windows)
元数据中的注释
{"isbns":["1119468558","9781119468554"],"last_page":678,"publisher":"Wiley-Scrivener"}
元数据中的注释
Source title: Handbook of Graphene, Volume 1: Growth, Synthesis, and Functionalization
备用描述
Cover......Page 1
Title Page......Page 5
Copyright Page......Page 6
Contents......Page 7
Preface......Page 17
1.1 Graphite in Cast Irons......Page 19
1.1.1 Spheroidal Graphite in Ductile Iron......Page 21
1.1.3 Compacted Graphite in Compacted Graphite Iron......Page 22
1.2.1 Quenching Sequence and Microstructure Evolutions......Page 23
1.2.2 Evolutions of Graphite Size Distribution......Page 27
1.2.3 Early Spheroidal Graphite Formation in Liquid......Page 32
1.2.4 Graphite Engulfment by Austenite and Carbon Redistribution......Page 33
1.2.5 Growth Stages of Spheroidal Graphite in Ductile Iron......Page 36
1.3 Structure of Graphite......Page 43
1.4.1 Dislocations, Tilt Boundaries, and Twin Boundaries......Page 46
1.4.2 2H/3R Structure Transition by Partial Dislocations......Page 49
1.4.3 2H/3R Structure Transition by Stacking Faults......Page 50
1.4.4 2H/3R Structure Transition by c-Axis Rotation Faults......Page 52
1.4.5 2H/3H Structure Transition by Heterocyclic Defects......Page 53
Acknowledgment......Page 54
References......Page 55
2.1.1 A Brief History of Graphene Synthesis......Page 59
2.1.2 CVD Graphene—Advantages and Limitations......Page 60
2.2 Characterization of CVD Imperfections......Page 62
2.3 Optimizing CVD Conditions for Enhanced Graphene Quality......Page 64
2.3.1 Optimizing Growth Kinetics......Page 65
2.3.2 Optimizing Fluid Dynamics......Page 67
2.3.3 Optimizing Scale of Synthesis......Page 69
2.3.4 Optimizing Substrate Morphology......Page 71
References......Page 74
3.1 Introduction......Page 81
3.2 Chemical Modification of Graphene—Fluorographene......Page 82
3.3 Stable Phases of Fluorographene—CF, C2F, and C4F......Page 97
3.4 Synthesis Methods of Fluorographene......Page 99
3.5 Atomic and Electronic Structure of Fluorographene......Page 104
3.6.1 Calculations......Page 105
3.6.3 Pure Ordered Graphene Interaction with FHF–, H2OF–, H2OFHF–Ions and Associates......Page 106
3.6.4 Associates Adsorption on the Fluorographene Surface......Page 109
3.6.5 Associates Adsorption on the Pure Graphene with Grain Boundary......Page 110
3.6.6 Hydronium Adsorption on the Graphene Surface......Page 112
Acknowledgments......Page 113
References......Page 114
4.1 Introduction......Page 119
4.2.1 Synthesis of Al Alloy Hybrid Composite Foam Reinforced with SiC and Graphene......Page 120
4.2.3 Split Hopkinson Pressure Bar (SHPB)......Page 121
4.3.1 Microstructural Studies of As-Received Graphene and Al Composite Foam......Page 123
4.3.2 High Strain Rate Compression Behavior......Page 124
4.4 Discussion......Page 125
References......Page 132
5.1 Introduction......Page 135
5.2 Graphene on â-SiC/Si Wafers......Page 138
5.3 Atomic and Electronic Structure of Few-Layer Graphene Synthesized on â-SiC/Si(001)......Page 140
5.4 Growth of Few-Layer Graphene on SiC(001)/Si(001) Wafers in UHV......Page 146
5.5 Self-Aligned Graphene Nanoribbons Synthesized on Vicinal SiC(001) Surfaces: Atomic Structure and Transport Properties......Page 153
5.6 Magnetic Properties of Graphene/SiC(001)......Page 156
Acknowledgments......Page 160
References......Page 161
6.1 Introduction......Page 171
6.2 Growth Mechanism of Epitaxial Graphene on SiC......Page 175
6.3 Structural Features of Epitaxial Graphene on SiC......Page 178
6.4 Electronic Structure and Properties of Graphene on SiC......Page 186
6.5 Prospects for Graphene on SiC......Page 195
6.6 Conclusion......Page 197
References......Page 198
7.1 Introduction......Page 219
7.2.2 Evaporation and Deposition Rates......Page 221
7.2.4 Evaporation Materials......Page 224
7.3.1 Main Components Needed to Set Up the Experiment Using Graphite Rod Form of Evaporation......Page 225
7.3.2 Principle of Operation......Page 226
7.3.3 Experimental Conditions for Carbon Evaporation......Page 227
7.4.1 Preparation of Si(111) 7×7 Substrate......Page 228
7.4.2 Experimental Details......Page 229
7.5.1.1 Model 1: C/a-C/Si(111)......Page 230
7.5.1.2 Model 2: C/a-C/3C-SiC/Si(111)......Page 234
7.5.1.3 Model 3: C/3C-SiC/Si(111)......Page 240
7.5.1.4 Model 4: C/Si/3C-SiC/Si(111)......Page 247
7.5.2.1 Basics of Diffusion......Page 255
7.5.2.2 Phenomenological Approach......Page 256
7.5.2.3 Diffusion Coefficient......Page 257
7.5.2.4 Silicon Diffusion through 3C-SiC Buffer......Page 258
7.6 Conclusions......Page 262
References......Page 263
8 Chemical Reactivity and Variation in Electronical Properties of Graphene on Ni(111) and Reduced Graphene Oxide......Page 267
8.2.1 Experimental Setup for Graphene......Page 268
8.2.2 Behavior of Graphene Reactivity at Different Temperatures......Page 269
8.2.3 Behavior of Graphene Reactivity at Different Growing Condition......Page 274
8.2.4 Defect......Page 282
8.3.1 Experimental Setup for GO and rGO......Page 288
8.3.2 Functionalization......Page 290
8.3.3 Application of rGO in Ink-Jet Printing......Page 298
8.3.4 Membranes......Page 305
8.4 Conclusions......Page 307
References......Page 308
9.1 Introduction......Page 313
9.1.1 Chlorophyll Self-Assembly......Page 314
9.1.2 Combination of Chlorophyll and Graphene......Page 315
9.2.1 Drop Casting of Chlorophyll on Graphene......Page 318
9.2.1.2 Drop-Casted Thylakoid Membranes (TM) on Electrochemical Modification of Graphene Electrodes......Page 321
9.2.2 Chlorophyll-Assisted Exfoliation of Graphite......Page 322
9.2.2.2 Contribution of Water, Solvent Polarity, and Chlorophyll Concentration in Exfoliation......Page 323
9.2.2.4 Applicability in Energy Harvesting......Page 326
9.2.2.5 Applicability in Molecular Electronics......Page 328
9.2.2.6 Applicability in Photodynamic Therapy......Page 330
9.2.3 Chlorophyll-Assisted Photoreduction of Graphene Oxide......Page 332
9.2.3.1 Applicability in Energy Harvesting......Page 333
9.2.3.2 Applicability in Molecular Electronics......Page 334
9.2.3.3 Applicability in Biocompatible Coating for Bone Tissue Replacement......Page 335
9.3 Conclusions and Perspectives......Page 336
References......Page 337
10 Graphene Structures: From Preparations to Applications......Page 341
10.1 Introduction......Page 342
10.2.1.2 Chemical Exfoliation......Page 343
10.2.2.1 SiC Sublimation......Page 346
10.2.2.2 Chemical Vapor Deposition......Page 348
10.3 Technological Applications of Graphene......Page 350
10.3.1 Thermal Applications......Page 351
10.3.2.1 Batteries......Page 352
10.3.2.2 Sensors......Page 355
10.3.2.3 Transistors......Page 361
10.3.2.4 Flexible......Page 362
References......Page 364
11.1 Introduction......Page 377
11.2 Preparation of Graphene......Page 378
11.3.1 Assembly of GO Sheets......Page 379
11.3.1.1 Self-Assembly Method......Page 380
11.3.1.2 Template-Assisted Method......Page 382
11.3.1.3 Electrospraying......Page 384
11.3.2 Direct Deposition of 3D Graphene Structures......Page 385
11.4.1 Spheres......Page 386
11.4.2 Networks......Page 388
11.4.3 Films......Page 389
11.4.4 Other Novel Architectures......Page 391
11.5.1 Supercapacitors......Page 393
11.5.2 Lithium-Ion Batteries......Page 395
11.5.4 Fuel Cells......Page 397
11.6 Conclusions and Perspectives......Page 398
References......Page 399
12.1 Introduction......Page 407
12.3.1 Composites with Inorganic Nanoparticles......Page 409
12.3.2 Composites with Polymers or Macromolecules......Page 414
12.3.3 Composite with Quantum Dots, 2D Materials, and 3D MOFs......Page 416
12.3.4 Some Other Complex Structures Containing Graphene Materials......Page 418
12.4.1 Supercapacitor......Page 420
12.4.1.1 Graphene-Based Metal Oxide Supercapacitor......Page 421
12.4.2 Fuel Cells......Page 422
12.4.3 Lithium Ion Batteries......Page 424
12.4.4 Water Splitting......Page 425
12.4.5 CO2 Reduction Reaction......Page 426
12.4.6 N2 Reduction Reaction......Page 429
References......Page 430
13.1 Introduction......Page 439
13.2.2 Characterizations......Page 441
13.3.1 Surface Morphology and Electron Field Emission (EFE)......Page 442
13.3.2 Raman Spectroscopy......Page 443
13.3.3 Electronic Structure and Bonding Properties......Page 444
13.3.4 Magnetic Behaviors (M-H Loops) at 300- and 40-K Temperature......Page 448
13.3.6 Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM)......Page 451
13.4 Role of Hydrogen for the Magnetism Behavior in Graphene: A Theoretical Idea......Page 453
13.4.1 Defects in Graphene......Page 455
13.4.2 Adatoms Defects–Induced Magnetism in Graphene......Page 456
13.4.4 Vacancy-Induced Magnetism in Graphene......Page 457
13.4.5 Hydrogen Vacancy in Graphene......Page 458
13.4.7 Domain Boundaries Defects Induced Magnetism in Graphene......Page 459
13.4.10 Spin-Polarized States at Zigzag Edges in Graphene......Page 460
References and Notes......Page 461
14 The Impact of Uniaxial Strain and Defect Pattern on Magnetoelectronic and Transport Properties of Graphene......Page 469
14.1 Introduction......Page 470
14.2.1 Substitutional Superlattices......Page 473
14.2.2 Interstitial Superlattices......Page 476
14.2.3 Superstructural Low-Temperature Stability......Page 479
14.2.4 Kinetics of Long-Range Atomic Order......Page 483
14.3.1 Model Hamiltonian, Electron Diffusivity, and Conductivity......Page 485
14.3.2 Atomic Bond Deformations and Defect Simulations......Page 487
14.4.1 Sensitivity to the Uniaxial Tensile Strain Direction......Page 492
14.4.2 Tuning Conductivity via Defect Configurations......Page 496
14.5 Fingerprints of External Magnetic Field in the Electronic Spectrum......Page 501
14.5.1 Analytical vs. Numerical Findings for Perfect Monolayer......Page 502
14.5.2 Shifting Landau Energy Levels via Stretching Deformations......Page 504
14.5.3 Smearing and Suppressing of Landau Levels by Point and Line Disorders......Page 505
14.6.1 Sample Preparation and Measurement Conditions......Page 508
14.6.2 Experimental Results and Analysis......Page 509
14.7 Conclusions......Page 511
References......Page 513
15 Exploiting Graphene as an Efficient Catalytic Template for Organic Transformations: Synthesis, Characterization and Activity Evaluation of Graphene-Based Catalysts......Page 521
15.1 Introduction......Page 522
15.1.1.1 Graphite Oxide (GO)–Based GNCs......Page 523
15.1.1.2 Reduced Graphite Oxide (rGO) and Heteroatom Doped–Based GNCs......Page 525
15.1.1.3 Sulfonated Graphite Oxide–Based GNCs......Page 526
15.1.1.4 Other Nonmetal GNCs......Page 527
15.1.2.2 GNCs Based on Noble Metal Complexes......Page 531
15.1.3.1 GNCs Carrying Non-Noble Metal Nanoparticles......Page 534
15.2 Conclusions and Outlook......Page 535
References......Page 540
16.1 Introduction......Page 547
16.2 Synthesis of Graphene-Based Materials......Page 549
16.2.1.2 Chemical Oxidation......Page 550
16.2.2 Bottom-Up Synthesis of Graphene-Based Materials......Page 551
16.2.3 Instrumental Recognition of Exfoliated Graphene......Page 552
16.2.5.1 Exfoliation by Functionalization......Page 554
16.2.5.2 Mechanical Exfoliation......Page 555
16.2.5.3 Intercalative Exfoliation......Page 557
16.2.6.1 Surfactant/Polymer-Based Exfoliated Graphene for the Catalysis......Page 566
16.2.6.2 Ultrasonicated-Based Exfoliation for the Catalysis......Page 568
References......Page 570
17.1 Graphene-Based Materials and Applications......Page 577
17.2.1 Electrochemical Supercapacitors......Page 578
17.2.2 Electronics and Optoelectronics......Page 584
17.2.3 Fuel Cells......Page 588
17.2.4 Solar Cells......Page 589
17.3 Sensors and Biosensors......Page 590
17.4 Biomedical Engineering......Page 597
17.4.1 Tissue Engineering......Page 598
17.4.2 Drug Delivery......Page 600
17.5.1 Dyes Removal......Page 602
17.5.2 Metal Ions Removal......Page 603
17.6.1 Synthesis for Industrial Applications......Page 604
17.6.2 Green Chemistry......Page 605
17.6.3 Biocatalysis......Page 606
17.7.1 Advanced Thermal and Mechanical Properties......Page 608
17.7.2 Lubricants......Page 610
17.7.3 Flexible Electronics......Page 611
17.7.5 Marine Antifouling Coating......Page 613
17.8 Concluding Remarks......Page 614
References......Page 615
18.1 Introduction......Page 629
18.2.1 General Remarks......Page 631
18.2.2 Experimental Data......Page 632
18.2.3 The Semiempirical Tight-Binding Model for the Carbon Film and Its Comparison with Experimental Data......Page 633
18.3.1 Bilayer Graphene: Material between Graphene and Graphite......Page 639
18.3.2 Band Structure in BLG with Shifted Graphene Layers......Page 640
18.3.3 Anisotropy of Conductivity in BLG with Shifted Graphene Layers......Page 645
18.3.4 Restrictions of Model Possible Applications......Page 649
18.4 Energy Spectrum and Electrical Conductivity of Graphene with a Nitrogen Impurity......Page 650
18.5 Energy Spectrum of Graphene with Adsorbed Potassium Atoms......Page 656
18.6 Conclusions......Page 659
References......Page 660
Appendix......Page 663
Index......Page 667
EULA......Page 676
备用描述
__Handbook of Graphene, Volume 1,__- Optimization of graphene growth and challenges for synthesis of high-quality graphene and graphite in metallic materials;- Exfoliation of graphene sheets obtained by sonication, ball milling and use of polymers and surfactants;- Structure, electronic properties, functionalization methods, and prospects of epitaxial graphene grown on hexagonal and cubic silicon carbide substrates;- Growth of graphene on Si(111) wafers via direct deposition of solid-state carbon atom and characterization of graphene-on-silicon films;- Chemical reactivity and modification of electronical properties of graphene grown on Ni(111);- Enhancement of the cell wall strength and stability of foam structure utilizing graphene;- Influence of applied strain and magnetic field on the electronic and transport properties of graphene with different kinds of defects;- Application of hydrogen functionalized graphene in spintronic nanodevices;- Electrochemistry and catalytic properties of graphene-based materials;- Functionalization of graphene with molecules and/or nanoparticles for advanced applications such as flexible electronics, biological systems, ink-jet applications and coatings;- Graphene-based composite materials devoted to electrochemical applications such as supercapacitors, lithium ion batteries and electrode material;- Three-dimensional graphene-based structures which preserve the intrinsic properties of 2D graphene and provide advanced functionalities with desired characteristics in a wide range of applications such as sensors, batteries, supercapacitors, fuel cells, etc.;- Carbon allotropes between diamond and graphite, which allow creating semiconductor properties in graphene and related structures.The 18 chapters of this handbook represent deep and very stimulating contributions to the processes of growth, synthesis and functionalization of graphene for several potential applications.This book is intended for students and active researchers in the field of graphene who are currently investigating the fundamental properties of this amazing low-dimensional material and its applications in micro- and nanotechnologies. It is also necessary reading for entrepreneurs and industrialists because it discusses a variety of possible applications of graphene and different ways of improving the quality of synthesized graphene.
备用描述
This unique multidisciplinary 8-volume set focuses on the emerging issues concerning graphene materials and provides a shared platform for both researcher and industry. The Handbook of Graphene comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of the advanced materials. The Handbook of Graphene comprises 140 chapters from world renowned experts. Volume 1 is solely focused on Growth, Synthesis, and Functionalization of Graphene. Some of the important topics include but not limited to: Graphite in metallic materials-growths, structures and defects of spheroidal graphite in ductile iron; synthesis and quality optimization; methods of synthesis and physico-chemical properties of fluorographenes; graphene-SiC reinforced hybrid composite foam: response to high strain rate deformation; atomic structure and electronic properties of few-layer graphene on SiC(001); features and prospects for epitaxial graphene on SiC; graphitic carbon/graphene on Si(111) via direct deposition of solid-state carbon atoms: growth mechanism and film characterization; chemical reactivity and variation in electronical properties of graphene on Ni(111) and reduced graphene oxide; chlorophyll and graphene: a new paradigm of biomimetic symphony; graphene structures: from preparations to applications; three-dimensional graphene-based structures: production methods, properties and applications; electrochemistry of graphene materials; hydrogen functionalized graphene nanostructure material for spintronic application; the impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene; exploiting graphene as an efficient catalytic template for organic transformations: synthesis, characterization and activity evaluation of graphene-based catalysts; exfoliated graphene based 2D materials; synthesis and catalytic behaviors; functionalization of graphene with molecules and/or nanoparticles for advanced applications; carbon allotropes'between diamond and graphite': how to create semiconductor properties in graphene and related structures.
备用描述
"Despite being just a one-atom-thick sheet of carbon, graphene is one of the most valuable nanomaterials. Initially discovered through scotch-tape-based mechanical exfoliation, graphene can now be synthesized in bulk using various chemical techniques. Counted among the contrasting properties of this remarkable material are its lightweight, thinness, flexibility, transparency, strength and resistance, along with superior electrical, thermal, mechanical and optical properties. Due to these novel traits, graphene has attracted attention for use in cutting-edge applications in almost every area of technology, which are projected to change the world. This 5th volume of the Handbook is solely focused on Graphene in Energy, Healthcare, and Environmental Applications. Some of the important topics include but not limited to graphene nanomaterials in energy and environment applications; graphene as nanolubricant for machining, three-dimensional graphene foams for energy storage applications; three-dimensional graphene materials: synthesis and applications in electrocatalysts and electrochemical sensors; graphene and graphene-based hybrid composites for advanced rechargeable battery electrodes; graphene-based materials for advanced lithium-ion batteries; graphene-based materials for supercapacitors and conductive additives of lithium ion batteries; graphene-based flexible actuators, sensors, and supercapacitors; graphene as catalyst support for the reactions in fuel cells; nitrogen-doped carbon nanostructures as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts in acidic media; graphene-based materials for photocatalytic H2 evolution; graphene thermal functional device and its property characterization; self- and directed-assembly of metallic and nonmetallic fluorophors: considerations into graphene and graphene oxides for sensing; stimuli-responsive graphene-based matrices for smart therapeutics; application of graphene materials in molecular diagnostics; graphene oxide membranes for liquid separation"-- Provided by publisher
开源日期
2020-11-29
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。