微积分的历程:从牛顿到勒贝格 (图灵新知) (Chinese Edition) 🔍
[美]William Dunham [Dunham, William] 北京:人民邮电出版社, 第1版, 2010-08-01
英语 [en] · 中文 [zh] · EPUB · 10.7MB · 2010 · 📘 非小说类图书 · 🚀/duxiu/lgli/zlib · Save
描述
More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway to higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth. Now with a new preface by the author, this book documents the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching—a story of genius triumphing over some of the toughest, subtlest problems imaginable. In touring The Calculus Gallery, we can see how it all came to be.
备用文件名
zlib/Mathematics/Others/[美]William Dunham [Dunham, William]/微积分的历程:从牛顿到勒贝格 (图灵新知)_18245652.epub
备选标题
微积分的历程 : 从牛顿到勒贝格 = The calculus gallery : masterpieces from Newton to Lebesgue
备选作者
邓纳姆 (Dunham, William)
备选作者
邓纳姆; 李伯民; 汪军; 张怀勇
备选作者
美 William Dunham
备选作者
WilliamDunham著
备用出版商
The People's Posts and Telecommunications Publishing House
备用出版商
Princeton University, Department of Art & Archaeology
备用出版商
Princeton University Press
备用版本
Tu ling xin zhi xi lie tu shu, Di 1 ban, Beijing, 2010
备用版本
Princeton University Press, Princeton, N.J., 2008
备用版本
Tu ling xin zhi, Di 1 ban, Beijing Shi, 2010
备用版本
United States, United States of America
备用版本
China, People's Republic, China
备用版本
图灵新知, Di 1 ban, Beijing, 2010
备用版本
Princeton, N.J, ©2005
备用版本
Princeton [u.a, 2008
备用版本
6.1.2008, 2008
备用版本
May 6, 2008
元数据中的注释
Bookmarks: p1 (p1): 前言
p2 (p7): 第1章 牛顿
p3 (p8): 广义二项展开式
p4 (p11): 逆级数
p5 (p14): 《分析学》中求面积的法则
p6 (p18): 牛顿的正弦级数推导
p7 (p22): 参考文献
p8 (p24): 第2章 莱布尼茨
p9 (p27): 变换定理
p10 (p35): 莱布尼茨级数
p11 (p40): 参考文献
p12 (p41): 第3章 伯努利兄弟
p13 (p43): 雅各布和调和级数
p14 (p47): 雅各布和他的垛积级数
p15 (p52): 约翰和Xx
p16 (p57): 参考文献
p17 (p59): 第4章 欧拉
p18 (p60): 欧拉的一个微分
p19 (p62): 欧拉的一个积分
p20 (p63): π的欧拉估值
p21 (p67): 引人注目的求和
p22 (p72): 伽玛函数
p23 (p76): 参考文献
p24 (p78): 第5章 第一次波折
p25 (p86): 参考文献
p26 (p87): 第6章 柯西
p27 (p88): 极限、连续性和导数
p28 (p91): 介值定理
p29 (p94): 中值定理
p30 (p97): 积分和微积分基本定理
p31 (p102): 两个收敛判别法
p32 (p107): 参考文献
p33 (p109): 第7章 黎曼
p34 (p112): 狄利克雷函数
p35 (p114): 黎曼积分
p36 (p121): 黎曼病态函数
p37 (p126): 黎曼重排定理
p38 (p129): 参考文献
p39 (p131): 第8章 刘维尔
p40 (p132): 代数数与超越数
p41 (p136): 刘维尔不等式
p42 (p141): 刘维尔超越数
p43 (p145): 参考文献
p44 (p146): 第9章 魏尔斯特拉斯
p45 (p148): 回到基本问题
p46 (p158): 四个重要定理
p47 (p160): 魏尔斯特拉斯病态函数
p48 (p170): 参考文献
p49 (p171): 第10章 第二次波折
p50 (p181): 参考文献
p51 (p182): 第11章 康托尔
p52 (p183): 实数的完备性
p53 (p186): 区间的不可数性
p54 (p190): 再论超越数的存在
p55 (p195): 参考文献
p56 (p196): 第12章 沃尔泰拉
p57 (p198): 沃尔泰拉病态函数
p58 (p200): 汉克尔的函数分类
p59 (p204): 病态函数的限度
p60 (p210): 参考文献
p61 (p211): 第13章 贝尔
p62 (p212): 无处稠密集
p63 (p215): 贝尔分类定理
p64 (p219): 若干应用
p65 (p225): 贝尔的函数分类
p66 (p228): 参考文献
p67 (p230): 第14章 勒贝格
p68 (p231): 回归黎曼积分
p69 (p232): 零测度
p70 (p239): 集合的测度
p71 (p243): 勒贝格积分
p72 (p250): 参考文献
p73 (p252): 后记
备用描述
<p><P>"<i>The Calculus Gallery</i> is one of the best efforts at mathematical exposition I have ever read! Dunham presents in detail and in his own words the sequence of ideas of classical giants of mathematics, but each new idea is described in modern terms and notation, so I had absolutely no trouble following along. Furthermore&#151;and this is an astounding achievement&#151;the entire work has a tightly woven development. If it were a detective story I would say it had a plot with no loose ends. An amazing feat. I wish I could plan a single lecture, never mind a course or a book, that well!"&#151;Henry Pollak, Teachers College, Columbia University<P>"What a fine resource! All of the famous functions that have shaped calculus and analysis parade before the reader in the original words of their creators. Bill Dunham has produced an excellent volume that teachers and students will enjoy and appreciate."&#151;Thomas Banchoff, Brown University<P>"Bill Dunham has done it again. <i>The Calculus Gallery</i> is a masterly journey through the works of thirteen mathematicians who formulated, formalised, and reformed the calculus into the modern analysis we learn today. Readers of his earlier books have learned to expect a clarity of exposition that few others can attain&#58; they will not be disappointed."&#151;Robin Wilson, author of <i>Four Colors Suffice</i><P>"This is an excellent book&#151;an amazing mathematical page-turner. William Dunham has done the seemingly impossible&#58; he has taken some difficult, advanced mathematics and, without sacrificing the technical details, written a lively, readable book about it."&#151;Barry Cipra, author of <i>Misteaks . . . and How to Find Them Before the Teacher Does</i><P>"Pedagogically excellent and extremely well written, <i>The Calculus Gallery</i> bridges the gap between general histories and detailed studies of individual mathematicians. Dunham has described mathematical developments in an engaging style rarely found in literature of this kind."&#151;Annette Imhausen, Trinity Hall, Cambridge<P>"A welcome addition to the literature. The idea of presenting a 'museum of mathematics' is new. It allows the author to present a nonstandard selection of theorems, so that even mathematicians with a strong historical background will learn a few things."&#151;Franz Lemmermeyer, Bilkent University, author of <i>Reciprocity Laws&#58; From Euler to Eisenstein</i></p> <h3>Eberhard Knobloch - Zentralblatt MATH Database</h3> <p>A fascinating, competent visit too the calculus gallery.</p>
备用描述
"More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway into higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth. William Dunham presents the definitions, theorems, and proofs. "Students of literature read Shakespeare; students of music listen to Bach," he writes. But this tradition of studying the major works of the "masters" is, if not wholly absent, certainly uncommon in mathematics. This book seeks to redress that situation."--Jacket
备用描述
Ben shu jie shao liao shi duo wei you xiu de shu xue jia : niu dun, lai bu ni ci, bo nu li xiong di, ou la, ke xi, li man, liu wei er, wei er si te la si, kang tuo er, wo er tai la, bei er, le bei ge . ran er, zhe bu shi yi ben shu xue jia de chuan ji, er shi yi zuo zhan shi wei ji fen hong wei hua juan de chen lie shi . zuo zhe xuan ze jie shao liao li shi shang de ruo gan jie zuo (zhong yao ding li), you ya di cheng xian liao wei ji fen cong chuang jian dao wan shan de man chang, qu zhe de guo cheng
备用描述
本书介绍了十多位优秀的数学家:牛顿, 莱布尼茨, 伯努利兄弟, 欧拉, 柯西, 黎曼, 刘维尔, 魏尔斯特拉斯, 康托尔, 沃尔泰拉, 贝尔, 勒贝格.然而, 这不是一本数学家的传记, 而是一座展示微积分宏伟画卷的陈列室.作者选择介绍了历史上的若干杰作(重要定理), 优雅地呈现了微积分从创建到完善的漫长, 曲折的过程
备用描述
Isaac Newton (1642-1727) stands as a seminal figure not just in mathematics but in all of Western intellectual history.
备用描述
Betr. die Brüder Jakob und Johann Bernoulli sowie Leonhard Euler (S. 35-68)
开源日期
2021-12-03
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。