Binding Phenomena: General Description and Analytical Applications (Physical Chemistry in Action) 🔍
Waldemar A. Marmisollé · Dionisio Posadas
Springer International Publishing AG, 1st ed. 2023, 2023
英语 [en] · PDF · 6.6MB · 2023 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/upload · Save
描述
This book presents a unified description of binding equilibrium for a wide variety of systems focusing on acid-base and coordination chemistry, adsorption at interfaces, and electron binding in electrochemistry. It overviews more complex phenomena such as competitive binding to different sites and of different ligands. Multiple sites such as those occurring in macromolecules, colloidal oxides, humid substances, and proteins are briefly discussed and many experimental results for these types of systems are analyzed. Titrations and consideration of the distribution of binding constants are also presented. The book is mainly directed at undergraduate/graduate students of chemistry, biology, and earth sciences. It is supplementary to the standard physical and analytical chemistry courses and will help both students and teachers get a more in-depth knowledge and understanding of the systems analyzed.
Erscheinungsdatum: 21.10.2023
Erscheinungsdatum: 21.10.2023
备用文件名
nexusstc/Binding Phenomena: General Description and Analytical Applications (Physical Chemistry in Action)/8006081902da1c72469f2a388d7ed6e3.pdf
备用文件名
lgli/460.pdf
备用文件名
lgrsnf/460.pdf
备用出版商
Springer Nature Switzerland AG
备用版本
Springer Nature (Textbooks & Major Reference Works), Cham, 2023
备用版本
Switzerland, Switzerland
元数据中的注释
producers:
Springer-i
Springer-i
元数据中的注释
{"edition":"1","isbns":["3031397355","9783031397356"],"publisher":"Springer","source":"libgen_rs"}
备用描述
Preface 7
Contents 9
Abbreviations 14
1 Introduction 15
Reference 19
2 Binding to Simple Substrates with One Binding Site 20
2.1 Acid–Base Reactions. A Simple Example of Proton Binding 20
2.1.1 The Average Relative Number of Moles of Bound Protons and the Degree of Protonation 21
2.1.2 The Average Relative Number of Moles of Dissociated Protons and the Degree of Dissociation 23
2.2 Complexation. A Simple Example of Complexation Without Competitive Binding 25
2.3 Adsorption. Simple Adsorption Equilibrium 26
2.4 Electron Binding. A Simple Case of Redox Reactions 28
2.5 The General Binding Process and the Binding Driving Force 33
2.6 About the Fulfilment of the Langmuir Equation for Different Processes 33
References 34
3 One Substrate with Two Different Binding Sites. Competitive Binding. Two Different Binding Species. Two Different Binding Substrates 35
3.1 Introduction 35
3.2 One Substrate with Two Different Binding Sites 35
3.3 Two Different Binding Species on the Same Substrate 36
3.3.1 Competitive Adsorption 37
3.3.2 Competitive Binding Between Protonation and Complexation 37
3.4 Electron Binding to Two Redox Couples 39
3.5 Two Different Binding Sites. A Simple Example of Proton Binding in Ampholytes 40
3.6 Formation of Zwitterions 42
References 47
4 Titration of Simple Substrates 48
4.1 Introduction 48
4.2 Simple Examples 49
4.2.1 Titration of a Strong Monoprotic Acid 49
4.2.2 Titration of a Weak Polyprotic Acid 49
4.3 About the Additivity of Titration Curves 51
4.4 Titration of an Arbitrary Mixture of Acids with an Arbitrary Mixture of Bases 54
4.5 A Simple Example of Titration with Complex Formation 54
4.6 Titration of a Simple Ampholyte 57
4.7 Redox Titrations 57
4.8 Electron Titration 61
4.9 Titration of Zwitterions 63
4.9.1 The Neutral Form Alone 63
4.9.2 The Zwitterion Form Alone 63
4.9.3 The Two Forms in Equilibrium 64
References 65
5 Continuous Distribution Functions. Cumulative and Density Distribution Functions. Known Examples 66
5.1 Introduction 66
5.2 Continuous Distribution Functions Cumulative and Density Probability Distribution Functions [1, 2] 66
5.2.1 Uniform Density Function 68
5.2.2 Dirac Delta Distribution 68
5.2.3 Gaussian Function 70
5.3 The Relation Between Binding Problems and Distribution Functions 70
References 72
6 Elements of Adsorption on Heterogeneous Substrates 73
6.1 Introduction 73
6.2 Adsorption on Heterogeneous Substrates. The Distribution Function for the Adsorption Energy 74
6.3 Theoretical Binding Isotherms in the Presence of Interaction Between the Bound Species 75
6.4 Statistical Deduction of the Langmuir Isotherm 75
6.5 The Ising Model 78
6.6 The Mean Field Approximation or Bragg–Williams Approximation 82
References 85
7 Theoretical Basis About Solid Polymers, Gels and Single Chains in Solution Related to the Titration of Macromolecules 86
7.1 Introduction 86
7.2 The State of Macromolecules 86
7.3 Some Physical Properties of Polymers 87
7.3.1 Deformation Term of a Single Macromolecule 88
7.4 The State of Macromolecules in Solution 88
7.5 Polyelectrolytes in Solution 89
7.5.1 The End-To-End Distance 89
7.6 Interactions of Polyelectrolytes with Other Species Present in the Solution 91
7.7 Electrostatic Interactions 92
7.7.1 Electrostatic Interaction for Charges Spheres 93
7.7.2 Electrostatic Interactions for Charged Cylinders 96
7.8 The Interaction of Polymers with the Solvent. Flory−Huggins Theory of Polymers in Solution 97
7.9 Swelling of Polymer (Non-Polyelectrolytic) Gels 99
7.10 The Swelling Equilibrium of Polyelectrolyte Gels 100
7.11 Electrostatic Interactions in Polyelectrolyte Gels 101
7.12 Deformation and Electrostatic Interactions and Binding Equilibria in Single Dissolved Macromolecules 102
7.13 The Equation for the pH Change During the Course of a Proton TC 103
References 104
8 Acid–Base Equilibria and Complexes at Complex Substrates. Polyacids and Polybases 106
8.1 Introduction 106
8.2 Polyacids. Average Number of Bound Protons 106
8.2.1 Average Number of Moles of Dissociated Protons 109
8.3 Polybases 110
8.4 Complexation and Competitive Binding in Multi-ligand Complexes 112
8.4.1 Ligands Without Hydrolysis 112
8.4.2 Ligands Undergoing Hydrolysis. Generalization of Competitive Binding 113
References 114
9 Acid–Base Titration of Complex Substrates. Binding Constant Distribution 115
9.1 Introduction 115
9.2 Titration of Polyacids and Polybases 116
9.2.1 Titration of Polyacids: Polymethacrylic Acid 116
9.2.2 Titration of Polybases. Polyvinylamine (PVA) 118
References 124
10 The Acid–Base Behaviour of Polyampholytes. The Case of Colloidal Oxides 125
10.1 Introduction 125
10.2 The Binding Polynomial for a Colloidal Oxide 127
10.3 Titration of Colloidal Oxides 132
10.4 Summary of Models on the Oxide Solution Interface 134
10.5 Analysis of Some Experimental Results with the Constant Capacitance Model 136
References 142
11 Titration of Polyampholytes. Poly-zwitterions and Other Examples 143
11.1 Titration of Polyampholytes 143
11.2 Titration of Copolymers of PVP and PMA 144
11.3 A Simple Model for Zwitterion Formation in Polyelectrolytes of Different Composition Assuming Ka y Kb Independent of 〈rH〉 and Its Titration 145
11.4 Acid Base Titration of Humic Acids 149
11.5 Titration of Proteins: Tanford’s Method 150
11.5.1 Stoichiometry 152
11.5.2 Theoretical Interpretation 152
References 153
12 Electron Titrations of Electrochemically Active Macromolecules 154
12.1 Introduction 154
12.2 Change of Volume as a Function of the Potential 158
12.3 Change of the Binding Species Concentration in the External Solution as a Function of the Oxidation Fraction 159
12.4 Electron Binding to Polyaniline 160
References 168
13 Appendices 169
13.1 Appendix 1. Macroconstants and Microconstants 169
13.1.1 Macroconstants and Microconstants 169
13.1.2 The Example of Ciprofloxacin 172
13.2 Appendix 2. Statistical Factors 174
13.3 Appendix 3. Elements of Statistical Thermodynamics 176
13.3.1 Introduction 176
13.3.2 The Example of an Ideal Gas 178
13.3.3 Subsystems 180
13.4 Appendix 4. The Binding Polynomial as the Partition Function of the Bound Species. Ghost−Site Binding Constants 180
13.5 Appendix 5. The Gibbs Adsorption Isotherm. Two-Dimensional State Equations 182
13.5.1 The Gibbs–Duhem Equation 182
13.5.2 The Gibbs Adsorption Isotherm 183
13.6 The General Binding Process and the Binding Driving Force 184
References 187
Index 188
Contents 9
Abbreviations 14
1 Introduction 15
Reference 19
2 Binding to Simple Substrates with One Binding Site 20
2.1 Acid–Base Reactions. A Simple Example of Proton Binding 20
2.1.1 The Average Relative Number of Moles of Bound Protons and the Degree of Protonation 21
2.1.2 The Average Relative Number of Moles of Dissociated Protons and the Degree of Dissociation 23
2.2 Complexation. A Simple Example of Complexation Without Competitive Binding 25
2.3 Adsorption. Simple Adsorption Equilibrium 26
2.4 Electron Binding. A Simple Case of Redox Reactions 28
2.5 The General Binding Process and the Binding Driving Force 33
2.6 About the Fulfilment of the Langmuir Equation for Different Processes 33
References 34
3 One Substrate with Two Different Binding Sites. Competitive Binding. Two Different Binding Species. Two Different Binding Substrates 35
3.1 Introduction 35
3.2 One Substrate with Two Different Binding Sites 35
3.3 Two Different Binding Species on the Same Substrate 36
3.3.1 Competitive Adsorption 37
3.3.2 Competitive Binding Between Protonation and Complexation 37
3.4 Electron Binding to Two Redox Couples 39
3.5 Two Different Binding Sites. A Simple Example of Proton Binding in Ampholytes 40
3.6 Formation of Zwitterions 42
References 47
4 Titration of Simple Substrates 48
4.1 Introduction 48
4.2 Simple Examples 49
4.2.1 Titration of a Strong Monoprotic Acid 49
4.2.2 Titration of a Weak Polyprotic Acid 49
4.3 About the Additivity of Titration Curves 51
4.4 Titration of an Arbitrary Mixture of Acids with an Arbitrary Mixture of Bases 54
4.5 A Simple Example of Titration with Complex Formation 54
4.6 Titration of a Simple Ampholyte 57
4.7 Redox Titrations 57
4.8 Electron Titration 61
4.9 Titration of Zwitterions 63
4.9.1 The Neutral Form Alone 63
4.9.2 The Zwitterion Form Alone 63
4.9.3 The Two Forms in Equilibrium 64
References 65
5 Continuous Distribution Functions. Cumulative and Density Distribution Functions. Known Examples 66
5.1 Introduction 66
5.2 Continuous Distribution Functions Cumulative and Density Probability Distribution Functions [1, 2] 66
5.2.1 Uniform Density Function 68
5.2.2 Dirac Delta Distribution 68
5.2.3 Gaussian Function 70
5.3 The Relation Between Binding Problems and Distribution Functions 70
References 72
6 Elements of Adsorption on Heterogeneous Substrates 73
6.1 Introduction 73
6.2 Adsorption on Heterogeneous Substrates. The Distribution Function for the Adsorption Energy 74
6.3 Theoretical Binding Isotherms in the Presence of Interaction Between the Bound Species 75
6.4 Statistical Deduction of the Langmuir Isotherm 75
6.5 The Ising Model 78
6.6 The Mean Field Approximation or Bragg–Williams Approximation 82
References 85
7 Theoretical Basis About Solid Polymers, Gels and Single Chains in Solution Related to the Titration of Macromolecules 86
7.1 Introduction 86
7.2 The State of Macromolecules 86
7.3 Some Physical Properties of Polymers 87
7.3.1 Deformation Term of a Single Macromolecule 88
7.4 The State of Macromolecules in Solution 88
7.5 Polyelectrolytes in Solution 89
7.5.1 The End-To-End Distance 89
7.6 Interactions of Polyelectrolytes with Other Species Present in the Solution 91
7.7 Electrostatic Interactions 92
7.7.1 Electrostatic Interaction for Charges Spheres 93
7.7.2 Electrostatic Interactions for Charged Cylinders 96
7.8 The Interaction of Polymers with the Solvent. Flory−Huggins Theory of Polymers in Solution 97
7.9 Swelling of Polymer (Non-Polyelectrolytic) Gels 99
7.10 The Swelling Equilibrium of Polyelectrolyte Gels 100
7.11 Electrostatic Interactions in Polyelectrolyte Gels 101
7.12 Deformation and Electrostatic Interactions and Binding Equilibria in Single Dissolved Macromolecules 102
7.13 The Equation for the pH Change During the Course of a Proton TC 103
References 104
8 Acid–Base Equilibria and Complexes at Complex Substrates. Polyacids and Polybases 106
8.1 Introduction 106
8.2 Polyacids. Average Number of Bound Protons 106
8.2.1 Average Number of Moles of Dissociated Protons 109
8.3 Polybases 110
8.4 Complexation and Competitive Binding in Multi-ligand Complexes 112
8.4.1 Ligands Without Hydrolysis 112
8.4.2 Ligands Undergoing Hydrolysis. Generalization of Competitive Binding 113
References 114
9 Acid–Base Titration of Complex Substrates. Binding Constant Distribution 115
9.1 Introduction 115
9.2 Titration of Polyacids and Polybases 116
9.2.1 Titration of Polyacids: Polymethacrylic Acid 116
9.2.2 Titration of Polybases. Polyvinylamine (PVA) 118
References 124
10 The Acid–Base Behaviour of Polyampholytes. The Case of Colloidal Oxides 125
10.1 Introduction 125
10.2 The Binding Polynomial for a Colloidal Oxide 127
10.3 Titration of Colloidal Oxides 132
10.4 Summary of Models on the Oxide Solution Interface 134
10.5 Analysis of Some Experimental Results with the Constant Capacitance Model 136
References 142
11 Titration of Polyampholytes. Poly-zwitterions and Other Examples 143
11.1 Titration of Polyampholytes 143
11.2 Titration of Copolymers of PVP and PMA 144
11.3 A Simple Model for Zwitterion Formation in Polyelectrolytes of Different Composition Assuming Ka y Kb Independent of 〈rH〉 and Its Titration 145
11.4 Acid Base Titration of Humic Acids 149
11.5 Titration of Proteins: Tanford’s Method 150
11.5.1 Stoichiometry 152
11.5.2 Theoretical Interpretation 152
References 153
12 Electron Titrations of Electrochemically Active Macromolecules 154
12.1 Introduction 154
12.2 Change of Volume as a Function of the Potential 158
12.3 Change of the Binding Species Concentration in the External Solution as a Function of the Oxidation Fraction 159
12.4 Electron Binding to Polyaniline 160
References 168
13 Appendices 169
13.1 Appendix 1. Macroconstants and Microconstants 169
13.1.1 Macroconstants and Microconstants 169
13.1.2 The Example of Ciprofloxacin 172
13.2 Appendix 2. Statistical Factors 174
13.3 Appendix 3. Elements of Statistical Thermodynamics 176
13.3.1 Introduction 176
13.3.2 The Example of an Ideal Gas 178
13.3.3 Subsystems 180
13.4 Appendix 4. The Binding Polynomial as the Partition Function of the Bound Species. Ghost−Site Binding Constants 180
13.5 Appendix 5. The Gibbs Adsorption Isotherm. Two-Dimensional State Equations 182
13.5.1 The Gibbs–Duhem Equation 182
13.5.2 The Gibbs Adsorption Isotherm 183
13.6 The General Binding Process and the Binding Driving Force 184
References 187
Index 188
开源日期
2024-03-10
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.