Chemical Reactions: Basic Theory and Computing (Theoretical Chemistry and Computational Modelling) 🔍
Antonio Laganà, Gregory A. Parker Springer International Publishing : Imprint : Springer, Theoretical Chemistry and Computational Modelling, Theoretical Chemistry and Computational Modelling, 1, 2018
英语 [en] · PDF · 3.9MB · 2018 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
描述
This graduate textbook, written by experienced lecturers, features the study and computation of efficient reactive processes. The text begins with the problem of determining the chemical reaction properties by first decomposing complex processes into their elementary components. Next, the problem of two colliding mass points is investigated and relationships between initial conditions and collision outcomes are discussed. The failure of classical approaches to match experimental information is discussed and a quantum formulation of the calculation of the properties of two colliding bodies is provided. The authors go onto describe how the formalism is extended to structured collision partners by discussing the methods used to compute the electronic structure of polyelectronic reactants and products and the formalism of atom diatom reactions. Additionally, the relationships between the features of the potential energy surface and the outcomes of the reactive dynamics, are discussed. Methods for computing quantum, classical, and semi-classical reactive probabilities based on the already discussed concepts and tools are also featured and the resulting main typical reactive behaviors are analyzed. Finally, the possibility of composing the computational tools and technologies needed to tackle more complex simulations as well as the various competences and distributed computing infrastructure needed for developing synergistic approaches to innovation are presented. (Source : 4e de couverture)
备用文件名
nexusstc/Chemical Reactions: Basic Theory and Computing/9096efbb8b996034c51e6572959a3f4c.pdf
备用文件名
lgli/Spring - Chemical Reactions. Basic Theory _amp; Computing 2018.pdf
备用文件名
lgrsnf/Spring - Chemical Reactions. Basic Theory _amp; Computing 2018.pdf
备用文件名
zlib/Chemistry/Antonio Laganà, Gregory A. Parker/Chemical Reactions. Basic Theory and Computing_3413439.pdf
备选作者
Laganà, Antonio, A. Parker, Gregory
备用出版商
Springer Nature Switzerland AG
备用版本
Theoretical Chemistry and Computational Modelling, 1st edition 2018, Cham, 2018
备用版本
Theoretical chemistry and computational modelling, Cham, Switzerland, 2018
备用版本
Theoretical chemistry and computational modelling (Print), Cham, 2018
备用版本
Springer Nature (Textbooks & Major Reference Works), Cham, 2018
备用版本
1st ed. 2018, 2018-01-29
备用版本
Switzerland, Switzerland
备用版本
Jan 18, 2018
备用版本
3, 20180117
元数据中的注释
0
元数据中的注释
lg2172027
元数据中的注释
producers:
Acrobat Distiller 10.0.0 (Windows)
元数据中的注释
{"container_title":"Theoretical Chemistry and Computational Modelling","content":{"parsed_at":1698493005,"source_extension":"epub"},"edition":"1","isbns":["3319623559","3319623567","9783319623559","9783319623566"],"issns":["2214-4714","2214-4722"],"last_page":214,"publisher":"Springer","series":"Theoretical Chemistry and Computational Modelling"}
元数据中的注释
Source title: Chemical Reactions: Basic Theory and Computing (Theoretical Chemistry and Computational Modelling)
备用描述
Preface 3
Contents 6
1 From the Phenomenology of Chemical Reactions to the Study of Two-Body Collisions 10
1.1 From Kinetics to Bimolecular Collisions 10
1.1.1 The Phenomenological Approach 10
1.1.2 Realistic Kinetic Models 13
1.1.3 The Transition State Theory Approach 14
1.1.4 Toward Detailed Single-Collision Studies 17
1.2 Classical Mechanics of Two-Particle Collisions 19
1.2.1 Reference Frame and Elementary Interactions 19
1.2.2 The Equations of Motion 22
1.2.3 The Deflection Angle θ 24
1.3 The Computation of Scattering Properties 29
1.3.1 Trajectories integration (Hamilton equations) 29
1.3.2 Numerical Computation of θ 30
1.3.3 Other Collisional Properties 33
1.3.4 The Cross Section 34
1.4 Popular Scattering Model Potentials 36
1.4.1 The Rigid Sphere Model 36
1.4.2 The Repulsive Coulomb Potential 38
1.4.3 Sutherland and Morse attractive--repulsive potentials 40
1.4.4 The Scattering Lennard--Jones (6--12) potential 43
1.5 Problems 45
1.5.1 Qualitative Problems 45
1.5.2 Quantitative Problems 46
2 The Quantum Approach to the Two-Body Problem 48
2.1 Quantum Mechanics and Bound States 48
2.1.1 The Limits of the Classical Mechanics Approach 48
2.1.2 The 3D Quantum Problem and Its Decomposition 51
2.1.3 The Harmonic Oscillator 55
2.2 Quantum Elastic Scattering 58
2.2.1 The Coulomb Potentials and the Hydrogen Atom 58
2.2.2 The Formulation of Quantum Elastic Scattering 61
2.2.3 The Quantum Elastic Scattering Cross Section 67
2.3 Realistic Models for Scattering Systems 70
2.3.1 Continuum Solutions for Hydrogen-Like Atoms E>0 70
2.3.2 The Rigid Sphere 71
2.3.3 The Morse Potential 73
2.4 Numerical Integration of the Schrödinger Equation 75
2.4.1 Expectation Values of the Operators 75
2.4.2 Approximation to the Laplacian 77
2.4.3 Approximating the Wave Function 82
2.4.4 The Approximation to the Potential 85
2.5 Numerical Applications 85
2.5.1 Systems of Linear Algebraic Equations 85
2.5.2 The Structure of the Wave Functions 86
2.5.3 The Time-Dependent Method 87
2.6 Problems 88
2.6.1 Qualitative Problems 88
2.6.2 Quantitative Problems 88
3 Ab initio Electronic Structure for Few-Body Systems 91
3.1 Structured Bodies 91
3.1.1 The One-Electron Wavefunction Approach 91
3.1.2 Quantum Monte Carlo 92
3.1.3 Many-Electron Wavefunctions 94
3.1.4 The Electronic Structure of Molecules 97
3.2 Higher Level Ab initio Methods 99
3.2.1 Beyond the Hartree--Fock Method 99
3.2.2 The CI and MC-SCF Methods 100
3.2.3 Perturbation Methods 101
3.3 Toward Extended Applications 103
3.3.1 Computation of Other Molecular Properties 103
3.3.2 Density Functional Theory Methods 104
3.3.3 The Valence Electron Method 105
3.3.4 Dropping Multicenter Integrals 106
3.4 Full Range Process Potentials 107
3.4.1 The Three-Body Internuclear Coordinates 107
3.4.2 Global Formulation of the Potential Energy Surface 108
3.4.3 Local and Mobile Methods 110
3.4.4 Process-Driven Local and Mobile Fitting Methods 112
3.5 Problems 115
3.5.1 Qualitative Problems 115
3.5.2 Quantitative Problems 116
4 The Treatment of Few-Body Reactions 118
4.1 The Combined Dynamics of Electrons and Nuclei 118
4.1.1 The N-Body Dynamical Equations 118
4.1.2 A Direct Integration of the General Equations 120
4.1.3 The Born--Oppenheimer Approximation 121
4.2 Three-Atom Systems 123
4.2.1 Three-Body Orthogonal Coordinates 123
4.2.2 Atom--Diatom Reactive Scattering Jacobi Method 126
4.2.3 Atom--Diatom Time-Independent APH Method 128
4.2.4 The Atom--Diatom Time-Dependent APH Method 134
4.3 Beyond Full Quantum Calculations 135
4.3.1 Reduced Dimensionality Quantum Treatments 135
4.3.2 Leveraging on Classical Mechanics 137
4.3.3 Semiclassical Treatments 139
4.4 Basic Features of Atom--Diatom Reactions 143
4.4.1 Energy Dependence of the Detailed Probabilities 143
4.4.2 Quantum Effects 146
4.4.3 Experimental Observables 149
4.4.4 Periodic Orbits and Statistical Considerations 151
4.4.5 The Last Mile to the Experiment 154
4.5 Problems 155
4.5.1 Qualitative Problems 155
4.5.2 Quantitative Problems 156
5 Complex Reactive Applications: A Forward Look to Open Science 158
5.1 Toward More Complex Systems 158
5.1.1 Full Range Ab Initio PESs for Many-Body Systems 158
5.1.2 Fitting PESs for Reactive and Nonreactive Channels 160
5.1.3 Four-Atom Many-Process Expansion 163
5.1.4 Four-Atom Quantum and Quantum-Classical Dynamics 165
5.1.5 Last Mile Calculations for Crossed Beam Experiments 168
5.2 Large Systems Studies Using Classical Dynamics 172
5.2.1 Trajectory Studies for Many-Body Systems 172
5.2.2 Some Popular Molecular Dynamics Codes 173
5.2.3 Force Fields 176
5.2.4 Toward Multiscale Treatments 179
5.3 Supercomputing and Distributed Computing Infrastructures 180
5.3.1 High-Performance Versus High-Throughput Computing 180
5.3.2 Networked Computing and Virtual Communities 182
5.3.3 The Collaborative Grid Empowered Molecular Simulator 185
5.4 Toward an Open Molecular Science 187
5.4.1 A Research Infrastructure for Open Molecular Science 187
5.4.2 Foundations and Stakeholders for the Molecular Open Science RI 188
5.4.3 Compute Resources and Data Management for Molecular Open Science 190
5.4.4 Molecular Open Science Use-Cases 191
5.5 The Innovativity of the Open Science Design 193
5.5.1 Service Layers and Data Storage 193
5.5.2 Multidisciplinarity, Societal Challenges, Impact and Dissemination 195
5.5.3 User and Service Quality Evaluation 199
5.5.4 A Credit Economy 200
5.6 Problems 202
5.6.1 Qualitative Problems 202
5.6.2 Quantitative Problems 202
Appendix 204
A.1 Vectors and Matrices Spaces and Operators 204
A.2 Derivative Proof 205
A.3 Partial Wave Expansion of the Elastic Scattering Wavefunction 206
A.4 Elimination method 207
Refs 209
开源日期
2018-01-18
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。