Two-Dimensional Quadratic Nonlinear Systems: Volume II: Bivariate Vector Fields (Nonlinear Physical Science) 🔍
Albert C. J. Luo Springer Nature Singapore Pte Ltd Fka Springer Science + Business Media Singapore Pte Ltd, Nonlinear Physical Science Ser, Singapore, 2022
英语 [en] · PDF · 5.9MB · 2022 · 📘 非小说类图书 · 🚀/lgli/upload/zlib · Save
描述
The book focuses on the nonlinear dynamics based on the vector fields with bivariate quadratic functions. This book is a unique monograph for two-dimensional quadratic nonlinear systems based on bivariate vector fields. Such a book provides different points of view about nonlinear dynamics and bifurcations of the quadratic dynamical systems on linear and nonlinear bivariate manifolds. Possible singular dynamics of the two-dimensional quadratic systems is discussed in detail. The dynamics of equilibriums and one-dimensional flows on bivariate manifolds are presented. Saddle-focus bifurcations are discussed, and switching bifurcations based on infinite-equilibriums are presented. Saddle-focus networks on bivariate manifolds are demonstrated. This book will serve as a reference book on dynamical systems and control for researchers, students and engineering in mathematics, mechanical and electrical engineering.
备用文件名
lgli/Albert C. J. Luo - Two-Dimensional Quadratic Nonlinear Systems: Volume II: Bivariate Vector Fields (2022, Springer).pdf
备用文件名
zlib/Mathematics/Geometry and Topology/Albert C. J. Luo/Two-Dimensional Quadratic Nonlinear Systems: Volume II: Bivariate Vector Fields_21768949.pdf
备选标题
Two-Dimensional Quadratic Nonlinear Systems: Volume I: Univariate Vector Fields
备选作者
Luo, Albert C. J.
备用版本
Nonlinear physical science, Singapore, 2021
备用版本
Springer Nature, Singapore, 2022
备用版本
Singapore, Singapore
备用版本
1st ed. 2021, 2022
备用版本
2, 20220329
元数据中的注释
producers:
iText® 5.5.13.2 ©2000-2020 iText Group NV (AGPL-version); modified using iText® 7.1.14 ©2000-2020 iText Group NV (AGPL-version)
备用描述
Preface 7
Contents 8
1 Two-Dimensional Linear-Bivariate Linear Systems 10
1.1 Single-Linear-Bivariate Linear Systems 10
1.2 One-Dimensional Flows and Switching Bifurcations 26
1.3 Two Linear-Bivariate Linear Systems 39
References 46
2 Single-Linear-Bivariate Quadratic Systems 47
2.1 Constant and Linear-Bivariate Quadratic Vector Fields 47
2.2 Single-Bivariate Linear and Quadratic Vector Fields 73
2.2.1 Single-Bivariate Linear and Quadratic Systems 73
2.2.2 Flow Switching and Appearing Bifurcations 97
2.3 Two Quadratic Vector Fields with a Single-Bivariate Function 122
2.3.1 A Single-Linear-Bivariate Quadratic System 122
2.3.2 Appearing and Switching Bifurcations 148
Reference 163
3 Linear-Bivariate Quadratic Dynamics 164
3.1 Linear and Quadratic Linear-Bivariate Vector Fields 164
3.2 Saddle-Focus and Saddle-Node Bifurcations 177
3.3 Two Linear-Bivariate Quadratic Vector Fields 189
3.4 Saddle-Focus Bifurcations and Global Dynamics 207
3.4.1 Saddle-Focus Appearing and Switching Bifurcations 207
3.4.2 Focus-Saddle Network 213
Reference 225
4 Linear-Bivariate Product Quadratic Systems 226
4.1 Two Linear-Bivariate Product Quadratic Vector Fields 226
4.2 Linear-Bivariate-Product Quadratic Systems 267
4.2.1 With a Constant Vector Field 267
4.2.2 With a Linear-Bivariate Linear Vector Field 270
4.2.3 Two Linear-Bivariate Product Quadratic Vector Fields 277
4.2.4 Switching Bifurcations 284
4.3 Product and Single Linear-Bivariate Quadratic Vector Fields 294
4.4 Product and Single Linear-Bivariate Quadratic Dynamics 313
4.4.1 Saddle-Focus Bifurcations 314
4.4.2 Simple Equilibriums and Switching Bifurcations 323
Reference 333
5 Nonlinear-Bivariate Quadratic Systems 334
5.1 Linear-Bivariate and Nonlinear-Bivariate Vector Fields 334
5.2 Nonlinear-Bivariate Quadratic Systems 363
5.2.1 With a Constant Vector Field 363
5.2.2 With a Linear-Bivariate Linear Vector Field 373
5.2.3 With a Two-Linear-Bivariate-Product Vector Field 381
5.3 Nonlinear and Single-Linear-Bivariate-Quadratic Vector Fields 385
5.4 Nonlinear and Single-Linear-Bivariate-Quadratic Dynamics 407
5.4.1 Saddle-Focus Bifurcations 407
5.4.2 Simple Equilibriums and Switching Bifurcations 415
5.5 Two Nonlinear Bivariate Quadratic Vector Fields 416
5.6 Nonlinear Bivariate Quadratic Dynamics 434
Reference 449
Index 450
备用描述
Such a two-dimensional dynamical system is one of simplest dynamical systems in nonlinear dynamics, but the local and global structures of equilibriums and flows in such two-dimensional quadratic systems help us understand other nonlinear dynamical systems, which is also a crucial step toward solving the Hilbert’s sixteenth problem.
备用描述
Nonlinear Physical Science
Erscheinungsdatum: 21.04.2023
备用描述
Nonlinear Physical Science
Erscheinungsdatum: 30.03.2022
开源日期
2022-06-13
更多信息……
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。