Quantum Chemistry : Classical to Computational 🔍
Dua, Amita, Singh, Chayannika
CRC Press LLC, 1, 2024
英语 [en] · PDF · 43.6MB · 2024 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
This book discusses major developments of quantum mechanics from classical to computational chemistry. The book is student and user friendly and includes exhaustive derivations, mathematical proofs, and theorems. A series of solved numerical have been added after each topic to have a better understanding of the subject. It will be helpful to Chemistry students at undergraduate and postgraduate level, as well for those appearing in various competitive examinations. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan)
备用文件名
lgli/Dua A. Quantum Chemistry. Classical to Computational_2025.pdf
备用文件名
lgrsnf/Dua A. Quantum Chemistry. Classical to Computational_2025.pdf
备用文件名
zlib/no-category/Dua, Amita, Singh, Chayannika/Quantum Chemistry: Classical to Computational_28106033.pdf
备选作者
Amita Dua, Chayannika Singh
备用出版商
Taylor & Francis Ltd
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
CRC Press (Unlimited), [S.l.], 2024
备用版本
2025
元数据中的注释
{"isbns":["1032789891","9781032789897"],"last_page":629,"publisher":"CRC Press","source":"libgen_rs"}
备用描述
Cover
Half Title
Quantum Chemistry: Classical to Computational
Copyright
Detailed Contents
Preface
1. Classical Mechanics
1.1 Dalton’s Atomic Theory
1.2 What are Classical Mechanics and Quantum Mechanics?
1.3 J.J. Thomson Model of Atom
1.4 Rutherford’s Nuclear Model of Atom—Discovery of Nucleus
1.5 Developments Leading to the Bohr Model of Atom
1.5.1 Dual Nature of Electromagnetic Radiation
1.5.2 Emission and Absorption Spectra
1.6 Bohr Model of Atom
1.7 Sommerfeld Theory
2. Towards Quantum Mechanics
2.1 Reasons for the Failure of Classical Model of Atom or Bohr Model of Atom
2.2 Developments Leading to Quantum Mechanical Model of Atom
2.3 de-Broglie’s Dual Nature of Matter
2.4 Heisenberg’s Uncertainty Principle
3. Introduction to Quantum Mechanics
3.1 Necessity of Quantum Mechanics
3.2 Schrodinger Wave Equation
3.3 Derivation of Time Independent Schrodinger Wave Equation
3.4 Physical Significance of Wavefunction (ψ) and Probability Density (ψ2)
3.5 Concept of Atomic Orbital
3.6 Quantum Mechanical Model of Atom
3.7 Eigen Value and Eigen Wavefunction
3.8 Normalised, Orthogonal and Orthonormal Wavefunction
3.9 Operators
3.10 Postulates of Quantum Mechanics
3.11 Derivation of Time Independent Schrodinger Wave Equation on the Basis of Postulates of Quantum Mechanics
3.12 Steady State Schrodinger Wave Equation
4. Particle in a Box: Quantisation of Translational Energy
4.1 Application of Postulates of Quantum Mechanics to Simple System
4.2 Operation of Quantum Mechanics
4.3 Introduction to Translational Motion of a Particle
4.4 Particle in One Dimensional Box: Quantisation of Translational Energy
4.4.1 Solution of Schrodinger Wave Equation
4.4.2 Conclusions from the Study of a Particle in One-dimensional Box
4.4.3 Solution of Properties in One Dimensional Box
4.4.4 Application of Particle in a One-dimensional Box
4.5 Particle in Two-dimensional Box
4.5.1 Two Dimensional Rectangular Box
4.5.2 Two Dimensional Square Box (Concept of Degeneracy)
4.6 Particle in Three Dimensional Box
4.6.1 Three Dimensional Cuboidal Box
4.6.2 Three dimensional Cubical Box (Concept of Degeneracy)
4.7 Free Particle
4.7.1 Solution of Schrodinger Wave Equation
4.7.2 Quantisation of Energy Levels: Difference between Particle in Free State and Under Bound State
5. Rigid Rotator: Quantisation of Rotational Energy
5.1 Introduction
5.2 Classical Treatment of Rigid Rotator
5.2.1 Kinetic Energy of Rigid Rotator
5.3 Quantum Mechanical Treatment: Schrodinger Wave Equation for Rigid Rotator
5.3.1 Deriving Schrodinger Equation by Reducing Angular Momentum of Kinetic Energy Operator in Polar Co-ordinates
5.3.2 Deriving Schrodinger Equation by Reducing Laplacian of Kinetic Energy Operator in Polar Coordinates
5.4 Wavefunction of Rigid Rotator
5.4.1 Solving the Φ Part of Wavefunction
5.4.2 Solving the Θ Part of Wavefunction
5.4.3 Spherical Harmonics, Y(θ, φ)
5.5 Rotational Energy of the Rigid Rotator
5.6 Rotational spectra
6. Linear Harmonic Oscillator: Quantisation of Vibrational Energy
6.1 Introduction
6.2 Classical Treatment of Linear Harmonic Oscillator
6.2.1 Frequency of Linear Harmonic Oscillator
6.2.2 Potential Energy of Linear Harmonic Oscillator
6.2.3 Total Energy of the Linear Harmonic Oscillator
6.3 Quantum Mechanical Treatment: Schrodinger Wave Equation for Linear Harmonic Oscillator
6.4 Solution of Schrodinger Wave Equation
6.4.1 Factorization Method
6.4.2 Power Series Method
6.5 Vibrational Energy Levels for Linear Harmonic Oscillator
6.6 Wavefunction Plots for Linear Harmonic Oscillator
6.7 Probability Plots for Linear Harmonic Oscillator
6.8 Symmetry of the Vibrational Wavefunction
6.9 Calculation of Properties of Linear Harmonic Oscillator
6.10 Orthonormal Sets of Wavefunction
6.11 Virial Theorem
6.12 Vibrational Spectra
7. “Hydrogen Atom”: Quantisation of Electronic Energy
7.1 Necessity of Replacing Bohr Theory
7.2 Setting of Schrodinger Equation for Hydrogen Atom
7.2.1 Solving the Φ Part of Wavefunction
7.2.2 Solving the Θ Part of Wavefunction
7.2.3 Solving the Radial Part, R, of Wavefunction
7.3 Quantum Numbers
7.3.1 Significance of Quantum Numbers
7.3.2 Importance of Quantum Numbers in Explaining Hydrogen Spectrum
7.4 Degenerate and Non-Degenerate Orbitals
7.5 Degeneracy of Energy Levels
7.6 Wavefunction of the Hydrogen Atom
7.6.1 Radial Wavefunction and Radial Plots
7.6.2 Angular Wavefunction and Shape of Orbitals
7.6.3 Contour Diagram or Contour maps
7.6.4 Total Wavefunction of Hydrogen Atom
7.7 Calculation of Properties of Hydrogen Atom
7.7.1 Probability density (ψ2)
7.7.2 Most Probable Distance (r) or Position of Maximum Probability Using Radial Probability Density Function
7.7.3 Average Value of Position or Expectation Value of Position or Mean Radius
7.7.4 Expectation value of Energy
7.8 Magnetic Properties: Angular Momentum and Magnetic Moment
7.8.1 Classical Expression of Magnetic Moment due to Orbital Motion of Electron
7.8.2 Quantum Mechanical Expression of Magnetic Moment Due to Orbital Motion of Electron
7.8.3 Potential Energy Due to Orbital Motion of an Electron in a Magnetic Field: Larmor Precession
7.8.4 Zeeman Effect
7.8.5 Anomalous Zeeman Effect
7.8.6 Explanation of Anomalous Zeeman Effect: Spin Quantum Number
7.8.7 Magnetic Moment Due to Spinning Motion of Electron
7.8.8 Potential Energy Due to Spinning Motion of Electron in a Magnetic Field
7.8.9 Experimental Demonstration of Electron Spin: Stern-Gerlach Experiment
7.9 Spin Orbit Coupling and Term Symbols
8. Multielectron System and Approximate Methods
8.1 Introduction
8.2 Pertubation Method
8.2.1 Solution of Pertubation Method
8.2.2 Application of Pertubation Method on Helium Atom
8.3 Variation Method
8.3.1 Solution of Variation Method
8.3.2 Application of Variation Method on Helium Atom
8.3.3 Application of Variation Method for Various Other Systems
8.4 Self-Consistent Field Method
9. Chemical Bonding
9.1 Introduction
9.2 Born-Oppenheimer Approximation
9.3 Approximate Methods to Solve Schrodinger Equation of a Molecule: Valence Bond Approach and Molecular Orbital Approach
9.3.1 Valence Bond (VB) Approach
9.3.2 Molecular Orbital (MO) Approach
9.4 Approximation of Linear Combination of Atomic Orbitals: LCAO–MO Treatment
9.5 LCAO–MO Treatment of Hydrogen Molecule Ion (H2+)
9.6 Hydrogen Molecule: Qualitative Treatment
9.6.1 Pauli’s Exclusion Principle w.r.t. Hydrogen Molecule
9.6.2 Hund’s Rule of Maximum Multiplicity w.r.t. Hydrogen Molecule
9.6.3 Aufbau’s Principle w.r.t. Hydrogen Molecule
9.7 LCAO–MO Treatment of Hydrogen Molecule
9.7.1 Configuration Interaction
9.8 Valence Bond Treatment (VBT) of Hydrogen Molecule
9.9 Comparison of VBT and MOT
9.10 LCAO–MO Treatment of Homonuclear Diatomic Molecules
9.11 LCAO–MO Treatment of Heteronuclear Diatomic Molecules
9.12 LCAO–MO Treatment of Triatomic Molecules
10. Hückel Molecular Orbital Theory
10.1 Introduction
10.2 Application of HMO Theory of Conjugated Systems
10.2.1 Ethylene
10.2.2 1,3-Butadiene
10.2.3 Cyclobutadiene
10.2.4 Cyclopropene
10.2.5 Benzene
10.3 Delocalization Energy
11. Basics of Computational Chemistry
11.1 Introduction
11.2 Potential Energy Surface (PES)
11.3 Stationary Point
11.4 Geometry Optimization
11.5 Molecular Mechanics (MM) Method
11.5.1 Applications of MM Method
11.6 Ab-initio Method
11.6.1 Applications of ab-initio Method
11.7 Semi-Empirical Method
11.7.1 Applications of Semi-Empirical Method
11.8 Density Functional Theory (DFT) Method
11.8.1 Applications of Density Functional Theory Method
11.9 Basis Set
Appendices
Appendix A1: Fundamental Physical Constants
Appendix A2: Standard Integrals
Appendix A3: Important Mathematical Formulae
Appendix A4: Selected Derived Units
Appendix A5: Energy Conversion Factors
Appendix A6: Unit Prefixes
Appendix A7: Logarithms Table
Appendix A8: Antilogarithms Table
Appendix A9: How to Take Log and Antilog
Index
Half Title
Quantum Chemistry: Classical to Computational
Copyright
Detailed Contents
Preface
1. Classical Mechanics
1.1 Dalton’s Atomic Theory
1.2 What are Classical Mechanics and Quantum Mechanics?
1.3 J.J. Thomson Model of Atom
1.4 Rutherford’s Nuclear Model of Atom—Discovery of Nucleus
1.5 Developments Leading to the Bohr Model of Atom
1.5.1 Dual Nature of Electromagnetic Radiation
1.5.2 Emission and Absorption Spectra
1.6 Bohr Model of Atom
1.7 Sommerfeld Theory
2. Towards Quantum Mechanics
2.1 Reasons for the Failure of Classical Model of Atom or Bohr Model of Atom
2.2 Developments Leading to Quantum Mechanical Model of Atom
2.3 de-Broglie’s Dual Nature of Matter
2.4 Heisenberg’s Uncertainty Principle
3. Introduction to Quantum Mechanics
3.1 Necessity of Quantum Mechanics
3.2 Schrodinger Wave Equation
3.3 Derivation of Time Independent Schrodinger Wave Equation
3.4 Physical Significance of Wavefunction (ψ) and Probability Density (ψ2)
3.5 Concept of Atomic Orbital
3.6 Quantum Mechanical Model of Atom
3.7 Eigen Value and Eigen Wavefunction
3.8 Normalised, Orthogonal and Orthonormal Wavefunction
3.9 Operators
3.10 Postulates of Quantum Mechanics
3.11 Derivation of Time Independent Schrodinger Wave Equation on the Basis of Postulates of Quantum Mechanics
3.12 Steady State Schrodinger Wave Equation
4. Particle in a Box: Quantisation of Translational Energy
4.1 Application of Postulates of Quantum Mechanics to Simple System
4.2 Operation of Quantum Mechanics
4.3 Introduction to Translational Motion of a Particle
4.4 Particle in One Dimensional Box: Quantisation of Translational Energy
4.4.1 Solution of Schrodinger Wave Equation
4.4.2 Conclusions from the Study of a Particle in One-dimensional Box
4.4.3 Solution of Properties in One Dimensional Box
4.4.4 Application of Particle in a One-dimensional Box
4.5 Particle in Two-dimensional Box
4.5.1 Two Dimensional Rectangular Box
4.5.2 Two Dimensional Square Box (Concept of Degeneracy)
4.6 Particle in Three Dimensional Box
4.6.1 Three Dimensional Cuboidal Box
4.6.2 Three dimensional Cubical Box (Concept of Degeneracy)
4.7 Free Particle
4.7.1 Solution of Schrodinger Wave Equation
4.7.2 Quantisation of Energy Levels: Difference between Particle in Free State and Under Bound State
5. Rigid Rotator: Quantisation of Rotational Energy
5.1 Introduction
5.2 Classical Treatment of Rigid Rotator
5.2.1 Kinetic Energy of Rigid Rotator
5.3 Quantum Mechanical Treatment: Schrodinger Wave Equation for Rigid Rotator
5.3.1 Deriving Schrodinger Equation by Reducing Angular Momentum of Kinetic Energy Operator in Polar Co-ordinates
5.3.2 Deriving Schrodinger Equation by Reducing Laplacian of Kinetic Energy Operator in Polar Coordinates
5.4 Wavefunction of Rigid Rotator
5.4.1 Solving the Φ Part of Wavefunction
5.4.2 Solving the Θ Part of Wavefunction
5.4.3 Spherical Harmonics, Y(θ, φ)
5.5 Rotational Energy of the Rigid Rotator
5.6 Rotational spectra
6. Linear Harmonic Oscillator: Quantisation of Vibrational Energy
6.1 Introduction
6.2 Classical Treatment of Linear Harmonic Oscillator
6.2.1 Frequency of Linear Harmonic Oscillator
6.2.2 Potential Energy of Linear Harmonic Oscillator
6.2.3 Total Energy of the Linear Harmonic Oscillator
6.3 Quantum Mechanical Treatment: Schrodinger Wave Equation for Linear Harmonic Oscillator
6.4 Solution of Schrodinger Wave Equation
6.4.1 Factorization Method
6.4.2 Power Series Method
6.5 Vibrational Energy Levels for Linear Harmonic Oscillator
6.6 Wavefunction Plots for Linear Harmonic Oscillator
6.7 Probability Plots for Linear Harmonic Oscillator
6.8 Symmetry of the Vibrational Wavefunction
6.9 Calculation of Properties of Linear Harmonic Oscillator
6.10 Orthonormal Sets of Wavefunction
6.11 Virial Theorem
6.12 Vibrational Spectra
7. “Hydrogen Atom”: Quantisation of Electronic Energy
7.1 Necessity of Replacing Bohr Theory
7.2 Setting of Schrodinger Equation for Hydrogen Atom
7.2.1 Solving the Φ Part of Wavefunction
7.2.2 Solving the Θ Part of Wavefunction
7.2.3 Solving the Radial Part, R, of Wavefunction
7.3 Quantum Numbers
7.3.1 Significance of Quantum Numbers
7.3.2 Importance of Quantum Numbers in Explaining Hydrogen Spectrum
7.4 Degenerate and Non-Degenerate Orbitals
7.5 Degeneracy of Energy Levels
7.6 Wavefunction of the Hydrogen Atom
7.6.1 Radial Wavefunction and Radial Plots
7.6.2 Angular Wavefunction and Shape of Orbitals
7.6.3 Contour Diagram or Contour maps
7.6.4 Total Wavefunction of Hydrogen Atom
7.7 Calculation of Properties of Hydrogen Atom
7.7.1 Probability density (ψ2)
7.7.2 Most Probable Distance (r) or Position of Maximum Probability Using Radial Probability Density Function
7.7.3 Average Value of Position or Expectation Value of Position or Mean Radius
7.7.4 Expectation value of Energy
7.8 Magnetic Properties: Angular Momentum and Magnetic Moment
7.8.1 Classical Expression of Magnetic Moment due to Orbital Motion of Electron
7.8.2 Quantum Mechanical Expression of Magnetic Moment Due to Orbital Motion of Electron
7.8.3 Potential Energy Due to Orbital Motion of an Electron in a Magnetic Field: Larmor Precession
7.8.4 Zeeman Effect
7.8.5 Anomalous Zeeman Effect
7.8.6 Explanation of Anomalous Zeeman Effect: Spin Quantum Number
7.8.7 Magnetic Moment Due to Spinning Motion of Electron
7.8.8 Potential Energy Due to Spinning Motion of Electron in a Magnetic Field
7.8.9 Experimental Demonstration of Electron Spin: Stern-Gerlach Experiment
7.9 Spin Orbit Coupling and Term Symbols
8. Multielectron System and Approximate Methods
8.1 Introduction
8.2 Pertubation Method
8.2.1 Solution of Pertubation Method
8.2.2 Application of Pertubation Method on Helium Atom
8.3 Variation Method
8.3.1 Solution of Variation Method
8.3.2 Application of Variation Method on Helium Atom
8.3.3 Application of Variation Method for Various Other Systems
8.4 Self-Consistent Field Method
9. Chemical Bonding
9.1 Introduction
9.2 Born-Oppenheimer Approximation
9.3 Approximate Methods to Solve Schrodinger Equation of a Molecule: Valence Bond Approach and Molecular Orbital Approach
9.3.1 Valence Bond (VB) Approach
9.3.2 Molecular Orbital (MO) Approach
9.4 Approximation of Linear Combination of Atomic Orbitals: LCAO–MO Treatment
9.5 LCAO–MO Treatment of Hydrogen Molecule Ion (H2+)
9.6 Hydrogen Molecule: Qualitative Treatment
9.6.1 Pauli’s Exclusion Principle w.r.t. Hydrogen Molecule
9.6.2 Hund’s Rule of Maximum Multiplicity w.r.t. Hydrogen Molecule
9.6.3 Aufbau’s Principle w.r.t. Hydrogen Molecule
9.7 LCAO–MO Treatment of Hydrogen Molecule
9.7.1 Configuration Interaction
9.8 Valence Bond Treatment (VBT) of Hydrogen Molecule
9.9 Comparison of VBT and MOT
9.10 LCAO–MO Treatment of Homonuclear Diatomic Molecules
9.11 LCAO–MO Treatment of Heteronuclear Diatomic Molecules
9.12 LCAO–MO Treatment of Triatomic Molecules
10. Hückel Molecular Orbital Theory
10.1 Introduction
10.2 Application of HMO Theory of Conjugated Systems
10.2.1 Ethylene
10.2.2 1,3-Butadiene
10.2.3 Cyclobutadiene
10.2.4 Cyclopropene
10.2.5 Benzene
10.3 Delocalization Energy
11. Basics of Computational Chemistry
11.1 Introduction
11.2 Potential Energy Surface (PES)
11.3 Stationary Point
11.4 Geometry Optimization
11.5 Molecular Mechanics (MM) Method
11.5.1 Applications of MM Method
11.6 Ab-initio Method
11.6.1 Applications of ab-initio Method
11.7 Semi-Empirical Method
11.7.1 Applications of Semi-Empirical Method
11.8 Density Functional Theory (DFT) Method
11.8.1 Applications of Density Functional Theory Method
11.9 Basis Set
Appendices
Appendix A1: Fundamental Physical Constants
Appendix A2: Standard Integrals
Appendix A3: Important Mathematical Formulae
Appendix A4: Selected Derived Units
Appendix A5: Energy Conversion Factors
Appendix A6: Unit Prefixes
Appendix A7: Logarithms Table
Appendix A8: Antilogarithms Table
Appendix A9: How to Take Log and Antilog
Index
开源日期
2024-03-17
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.