时间序列分析实战 : 基于机器学习和统计学 = Practical time series analysis 🔍
艾琳·尼尔森(Aileen Nielsen) 著, 王祎, 冯英睿 译 人民邮电出版社, O'REILLY, 2022
中文 [zh] · PDF · 477.9MB · 2022 · 📘 非小说类图书 · 🚀/zlib · Save
描述
[本书为扫描版而非文字版,且文件体积较大,约为455MB。介意者请慎重下载]内容提要:时间序列在现代生活中无处不在,它也是数据分析的重要对象。本书介绍时间序列分析的实用技巧,展示如何结合机器学习方法和传统的统计方法来分析各类时间序列数据,并提供Python 示例和R示例。本书共有17章,首先概览时间序列分析的历史,然后介绍数据的获取清洗、模拟和存储,接着关注可用于时间序列分析的建模技术,最后探讨时间序列分析在几个常见领域中的应用。本书适合与时间序列打交道的数据分析师、数据工程师、数据科学家及其他相关从业人员阅读。
备选标题
Shi jian xu lie fen xi shi zhan ji yu ji qi xue xi he tong ji xue = Practical time series analysis 基于机器学习和统计学 = Practical time series analysis
备用出版商
The People's Posts and Telecommunications Publishing House
备用出版商
Posts & Telecom Press
备用版本
First edition, Place of publication not identified, 2022
备用版本
China, People's Republic, China
备用描述
天气、股票、心跳都会产生时间序列数据,物联网、数字化医疗和智慧城市的兴起更是产生了大量的时间序列数据。随着数据的规模快速增长,应用机器学习和统计方法进行时间序列分析的做法越来越普遍,也越来越重要。 本书从实战角度介绍时间序列分析中的创新技术和实际用例,帮助你结合使用传统的统计方法和先进的机器学习技术来解决时间序列分析中的常见问题。由于Python和R都是时间序列分析常用的语言,因此本书兼顾这两种语言并对时间序列进行全面的阐释,可以让数据分析师、数据工程师和其他与数据打交道的读者快速上手。 发现并整理时间序列数据 针对时间序列进行探索性数据分析 模拟时间序列 存储时间序列 为时间序列生成并选择特征 测量误差 使用机器学习和深度学习分析时间序列 评估模型的精度和性能
备用描述
Detailed summary in vernacular field
开源日期
2025-03-18
更多信息……
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。