Theory of Blocks of the Finite Groups 🔍
Lluís Puig
Springer Science & Business Media, 2002, 2002
英语 [en] · 中文 [zh] · DJVU · 2.3MB · 2002 · 📘 非小说类图书 · 🚀/duxiu/lgli/lgrs/nexusstc/zlib · Save
描述
About 60 years ago, R. Brauer introduced "block theory"; his purpose was to study the group algebra kG of a finite group G over a field k of nonzero characteristic p: any indecomposable two-sided ideal that also is a direct summand of kG determines a G-block.
But the main discovery of Brauer is perhaps the existence of families of infinitely many nonisomorphic groups having a "common block"; i.e., blocks having mutually isomorphic "source algebras".
In this book, based on a course given by the author at Wuhan University in 1999, all the concepts mentioned are introduced, and all the proofs are developed completely. Its main purpose is the proof of the existence and the uniqueness of the "hyperfocal subalgebra" in the source algebra. This result seems fundamental in block theory; for instance, the structure of the source algebra of a nilpotent block, an important fact in block theory, can be obtained as a corollary.
The exceptional layout of this bilingual edition featuring 2 columns per page (one English, one Chinese) sharing the displayed mathematical formulas is the joint achievement of the author and A. Arabia.
But the main discovery of Brauer is perhaps the existence of families of infinitely many nonisomorphic groups having a "common block"; i.e., blocks having mutually isomorphic "source algebras".
In this book, based on a course given by the author at Wuhan University in 1999, all the concepts mentioned are introduced, and all the proofs are developed completely. Its main purpose is the proof of the existence and the uniqueness of the "hyperfocal subalgebra" in the source algebra. This result seems fundamental in block theory; for instance, the structure of the source algebra of a nilpotent block, an important fact in block theory, can be obtained as a corollary.
The exceptional layout of this bilingual edition featuring 2 columns per page (one English, one Chinese) sharing the displayed mathematical formulas is the joint achievement of the author and A. Arabia.
备用文件名
lgli/Puig L. Blocks of finite groups.. the hyperfocal subalgebra of a block (SMM, Springer, 2002)(chn)(en)(ISBN 9783540435143)(T)(209s)_MAa_.djvu
备用文件名
lgrsnf/Puig L. Blocks of finite groups.. the hyperfocal subalgebra of a block (SMM, Springer, 2002)(chn)(en)(ISBN 9783540435143)(T)(209s)_MAa_.djvu
备用文件名
zlib/no-category/Luis Puig/Blocks of Finite Groups_25579274.djvu
备选标题
Blocks of finite groups: the hyperfocal subalgebra of a block = [You xian qun de kuai: kuai de chao ju jiao zi dai shu]
备选标题
Blocks of finite groups : the hyperfocal subalgebra of a block = [有限群的块 : 块的超聚焦子代数
备选作者
Lluís Puig
备选作者
路易斯·步驰
备用出版商
Springer Spektrum. in Springer-Verlag GmbH
备用出版商
Steinkopff. in Springer-Verlag GmbH
备用出版商
Springer-Verlag New York, LLC
备用出版商
Springer Berlin
备用版本
Springer monographs in mathematics, Berlin, New York, Germany, 2002
备用版本
Springer monographs in mathematics, New York, New York State, 2002
备用版本
Springer Monographs in Mathematics, Berlin [etc, 2002
备用版本
1 edition, August 5, 2002
备用版本
2002, 2007
元数据中的注释
{"edition":"2002","isbns":["354043514X","9783540435143"],"last_page":209,"publisher":"Springer"}
元数据中的注释
Includes bibliographical references (p. [209]) and index
Text written in English and Chinese ; text in Chinese
Text written in English and Chinese ; text in Chinese
元数据中的注释
Includes bibliographical references and index.
备用描述
<p><P>About 60 years ago, R. Brauer introduced block theory; his purpose was to study the group algebra kG of a finite group G over a field k of nonzero characteristic p: any indecomposable two-sided ideal that also is a direct summand of kG determines a G-block.<BR>But the main discovery of Brauer is perhaps the existence of families of infinitely many nonisomorphic groups having a common block; i.e., blocks having mutually isomorphic source algebras.<BR>In this book, based on a course given by the author at Wuhan University in 1999, all the concepts mentioned are introduced, and all the proofs are developed completely. Its main purpose is the proof of the existence and the uniqueness of the hyperfocal subalgebra in the source algebra. This result seems fundamental in block theory; for instance, the structure of the source algebra of a nilpotent block, an important fact in block theory, can be obtained as a corollary.<P> The exceptional layout of this bilingual edition featuring 2 columns per page (one English, one Chinese) sharing the displayed mathematical formulas is the joint achievement of the author and A. Arabia.<p></p>
备用描述
"This book is an introduction to block theory including most of the main results about this discovery. From common knowledge on algebras and elementary knowledge of linear group representations, it starts by doing p-adic completion and lifting idempotent results, and reaches a complete proof of the existence and uniqueness of the hyperfocal subalgebra of a block."--Jacket
备用描述
Springer Monographs in Mathematics
Erscheinungsdatum: 13.06.2002
Erscheinungsdatum: 13.06.2002
开源日期
2023-07-29
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.