Linear Electrodynamic Response of Topological Semimetals: Experimental Results Versus Theoretical Predicitons (Springer Series in Solid-State Sciences, 199) 🔍
Artem V. Pronin
Springer International Publishing, Springer Nature, Cham, 2023
英语 [en] · PDF · 7.2MB · 2023 · 📘 非小说类图书 · 🚀/lgli/lgrs/upload · Save
描述
This book provides a model description for the electromagnetic response of topological nodal semimetals and summarizes recent experimental findings in these systems. Specifically, it discusses various types of topological semimetals – Dirac, Weyl, nodal-line, triple-point, and multifold semimetals – and provides description for the characteristic features of the linear electrodynamic response for all these types of materials.
Topological semimetals possess peculiar bulk electronic band structure, which leads to unusual electrodynamic response. For example, the low-energy inter-band optical conductivity of nodal semimetals is supposed to demonstrate power-law frequency dependence and the intra- and inter-band contributions to the conductivity are often mixed. Further, the magneto-optical response is also unusual, because of the non-equidistant spacing between the Landau levels. Finally, in semimetals with chiral electronic bands, e.g. in Weyl semimetals, the simultaneous application of parallel magnetic and electric fields leads to the chiral anomaly, i.e. to a misbalance between the electrons with diffident chiralities. This misbalance affects the electrodynamics properties of the material and can be detected optically. All these points are addressed here in detail.
The book is written for a wide audience of physicists, working in the field of topological condensed matter physics. It gives a pedagogical introduction enabling graduate students and non-experts to familiarize themselves with the subject.
Topological semimetals possess peculiar bulk electronic band structure, which leads to unusual electrodynamic response. For example, the low-energy inter-band optical conductivity of nodal semimetals is supposed to demonstrate power-law frequency dependence and the intra- and inter-band contributions to the conductivity are often mixed. Further, the magneto-optical response is also unusual, because of the non-equidistant spacing between the Landau levels. Finally, in semimetals with chiral electronic bands, e.g. in Weyl semimetals, the simultaneous application of parallel magnetic and electric fields leads to the chiral anomaly, i.e. to a misbalance between the electrons with diffident chiralities. This misbalance affects the electrodynamics properties of the material and can be detected optically. All these points are addressed here in detail.
The book is written for a wide audience of physicists, working in the field of topological condensed matter physics. It gives a pedagogical introduction enabling graduate students and non-experts to familiarize themselves with the subject.
备用文件名
lgli/1614.pdf
备用文件名
lgrsnf/1614.pdf
备选作者
Pronin, Artem V.
备用出版商
Springer Nature Switzerland AG
备用版本
Springer Series in Solid-State Sciences, 2023
备用版本
Switzerland, Switzerland
元数据中的注释
producers:
iTextSharpTM 5.5.14-SNAPSHOT ©2000-2020 iText Group NV (AGPL-version); modified using iTextSharpTM 5.5.14-SNAPSHOT ©2000-2020 iText Group NV (AGPL-version)
iTextSharpTM 5.5.14-SNAPSHOT ©2000-2020 iText Group NV (AGPL-version); modified using iTextSharpTM 5.5.14-SNAPSHOT ©2000-2020 iText Group NV (AGPL-version)
备用描述
Preface 6
Acknowledgements 8
Contents 10
1 Theoretical Background 13
1.1 Berry Phases, Topological Indices, and Topological Electronic Bands 13
1.1.1 Relevance of Topology to Electronic Bands 13
1.1.2 Berry Phase, Berry Connection, and Berry Curvature 16
1.1.3 Time-Dependent Phase 19
1.1.4 ``Berryology'' in Electronic Bands 19
1.1.5 Wave Packets and Anomalous Velocity 21
1.1.6 Chern-Insulator State and Integer Quantum Hall Effects 22
1.1.7 Topological Insulators 26
1.1.8 Topological Semimetals 29
1.2 Electrodynamics of Topological Semimetals 32
1.2.1 Complex Optical Conductivity and Dielectric Function 32
1.2.2 Electronic Band Dispersion and Optical Conductivity 33
1.3 Chiral Anomaly as Seen in Optics 36
1.3.1 Chiral Anomaly in Steady Fields 36
1.3.2 Dynamic Chiral Anomaly 37
2 Nodal-Line Semimetals 40
2.1 ZrSiS 40
2.1.1 Broadband Spectroscopy 41
2.1.2 Magneto-Optical Response 48
2.1.3 Conclusions 53
3 Dirac and Weyl Semimetals 55
3.1 The Dirac Semimetal Cd3As2 55
3.1.1 Experiment 56
3.1.2 Kramers-Kronig Analysis and its Robustness 57
3.1.3 Experimental Results 58
3.1.4 Discussion 60
3.1.5 Conclusions 63
3.2 The Dirac Semimetal Au2Pb 64
3.2.1 Sample Preparation and Characterization 64
3.2.2 Optical Experiments 67
3.2.3 Results and Discussion 67
3.2.4 Conclusions 72
3.3 The Weyl Semimetal NbP 72
3.3.1 Introduction 72
3.3.2 Sample Preparation, Experimental and Computational Details 73
3.3.3 Results and Analysis 75
3.3.4 Conclusions 82
3.4 The Weyl Semimetal TaP 82
3.4.1 Results and Discussion 83
3.4.2 Conclusions 87
3.5 Chiral Anomaly in Weyl Semimetals 87
3.5.1 Chiral Anomaly in TaAs 87
3.5.2 Dynamic Chiral Anomaly in NbAs 91
4 Triple-Point Semimetals 92
4.1 GdPtBi—Broadband Optical Response 92
4.1.1 Introduction 92
4.1.2 Sample Preparation and Experimental Details 93
4.1.3 Experimental Results 94
4.1.4 Computations and Analysis 96
4.1.5 Conclusions 99
4.2 Chiral Anomaly in GdPtBi 99
4.3 YbPtBi 101
4.3.1 Introduction 101
4.3.2 Experiment 102
4.3.3 Results and Discussion 103
4.3.4 Conclusions 109
5 Multifold Semimetals 110
5.1 RhSi 111
5.1.1 Experiment 111
5.1.2 Results and Discussion 112
5.1.3 Conclusions 119
5.2 PdGa 119
5.2.1 Experiment 119
5.2.2 Calculations 120
5.2.3 Results and Discussion 120
5.2.4 Conclusions 126
6 Summary 127
Appendix A Experiment and Data Processing 128
A.1 Zero-Field Measurements 128
A.2 Measurements in Magnetic Field 129
References 130
Acknowledgements 8
Contents 10
1 Theoretical Background 13
1.1 Berry Phases, Topological Indices, and Topological Electronic Bands 13
1.1.1 Relevance of Topology to Electronic Bands 13
1.1.2 Berry Phase, Berry Connection, and Berry Curvature 16
1.1.3 Time-Dependent Phase 19
1.1.4 ``Berryology'' in Electronic Bands 19
1.1.5 Wave Packets and Anomalous Velocity 21
1.1.6 Chern-Insulator State and Integer Quantum Hall Effects 22
1.1.7 Topological Insulators 26
1.1.8 Topological Semimetals 29
1.2 Electrodynamics of Topological Semimetals 32
1.2.1 Complex Optical Conductivity and Dielectric Function 32
1.2.2 Electronic Band Dispersion and Optical Conductivity 33
1.3 Chiral Anomaly as Seen in Optics 36
1.3.1 Chiral Anomaly in Steady Fields 36
1.3.2 Dynamic Chiral Anomaly 37
2 Nodal-Line Semimetals 40
2.1 ZrSiS 40
2.1.1 Broadband Spectroscopy 41
2.1.2 Magneto-Optical Response 48
2.1.3 Conclusions 53
3 Dirac and Weyl Semimetals 55
3.1 The Dirac Semimetal Cd3As2 55
3.1.1 Experiment 56
3.1.2 Kramers-Kronig Analysis and its Robustness 57
3.1.3 Experimental Results 58
3.1.4 Discussion 60
3.1.5 Conclusions 63
3.2 The Dirac Semimetal Au2Pb 64
3.2.1 Sample Preparation and Characterization 64
3.2.2 Optical Experiments 67
3.2.3 Results and Discussion 67
3.2.4 Conclusions 72
3.3 The Weyl Semimetal NbP 72
3.3.1 Introduction 72
3.3.2 Sample Preparation, Experimental and Computational Details 73
3.3.3 Results and Analysis 75
3.3.4 Conclusions 82
3.4 The Weyl Semimetal TaP 82
3.4.1 Results and Discussion 83
3.4.2 Conclusions 87
3.5 Chiral Anomaly in Weyl Semimetals 87
3.5.1 Chiral Anomaly in TaAs 87
3.5.2 Dynamic Chiral Anomaly in NbAs 91
4 Triple-Point Semimetals 92
4.1 GdPtBi—Broadband Optical Response 92
4.1.1 Introduction 92
4.1.2 Sample Preparation and Experimental Details 93
4.1.3 Experimental Results 94
4.1.4 Computations and Analysis 96
4.1.5 Conclusions 99
4.2 Chiral Anomaly in GdPtBi 99
4.3 YbPtBi 101
4.3.1 Introduction 101
4.3.2 Experiment 102
4.3.3 Results and Discussion 103
4.3.4 Conclusions 109
5 Multifold Semimetals 110
5.1 RhSi 111
5.1.1 Experiment 111
5.1.2 Results and Discussion 112
5.1.3 Conclusions 119
5.2 PdGa 119
5.2.1 Experiment 119
5.2.2 Calculations 120
5.2.3 Results and Discussion 120
5.2.4 Conclusions 126
6 Summary 127
Appendix A Experiment and Data Processing 128
A.1 Zero-Field Measurements 128
A.2 Measurements in Magnetic Field 129
References 130
备用描述
Springer Series in Solid-State Sciences
Erscheinungsdatum: 18.08.2023
Erscheinungsdatum: 18.08.2023
开源日期
2024-04-16
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.