BASIC ALGEBRA I NATHAN JACOBSON 🔍
Jacobson, Nathan. aut W.H.FREEMAN AND COMPANY, San Francisco, California, 1974
英语 [en] · PDF · 38.4MB · 1974 · 📗 未知类型的图书 · 🚀/duxiu/ia · Save
描述
Nathan Jacobson. Includes Bibliographical References.
备选标题
Euclidean and non-Euclidean geometries; development and history
备选标题
Basic algebra. 1 / [by] N. Jacobson
备选作者
Marvin J. Greenberg
备选作者
Nathan Jacobson
备用出版商
W. H. Freeman & Company
备用出版商
San Francisco Freeman
备用版本
United States, United States of America
备用版本
San Francisco, 1974-80
备用版本
1st Edition, 1974
元数据中的注释
[curator]paul.n@archive.org[/curator][date]20110509220825[/date][state]approved[/state]
元数据中的注释
Includes bibliographical references.
元数据中的注释
Type: 英文图书
元数据中的注释
Bookmarks:
1. (p1) Preface
2. (p2) INTRODUCTION: CONCEPTS FROM SET THEORY. THE INTEGERS
2.1. (p3) 0.1 The power set of a set
2.2. (p4) 0.2 The Cartesian product set. Maps
2.3. (p5) 0.3 Equivalence relations. Factoring a map through an equivalence relation
2.4. (p6) 0.4 The natural numbers
2.5. (p7) 0.5 The number system Z of integers
2.6. (p8) 0.6 Some basic arithmetic facts about Z
2.7. (p9) 0.7 A word on cardinal numbers
3. (p10) 1 MONOIDS AND GROUPS
3.1. (p11) 1.1 Monoids of transformations and abstract monoids
3.2. (p12) 1.2 Groups of transformations and abstract groups
3.3. (p13) 1.3 Isomorphism. Cayley's theorem
3.4. (p14) 1.4 Generalized associativity. Commutativity
3.5. (p15) 1.5 Submonoids and subgroups generated by a subset. Cyclic groups
3.6. (p16) 1.6 Cycle decomposition of permutations
3.7. (p17) 1.7 Orbits. Cosets of a subgroup
3.8. (p18) 1.8 Congruences. Quotient monoids and groups
3.9. (p19) 1.9 Homomorphisms
3.10. (p20) 1.10 Subgroups of a homomorphic image. Two basic isomorphism theorems
3.11. (p21) 1.11 Free objects. Generators and relations
3.12. (p22) 1.12 Groups acting on sets
3.13. (p23) 1.13 Sylow's theorems
4. (p24) 2 RINGS
4.1. (p25) 2.1 Definition and elementary properties
4.2. (p26) 2.2 Types of rings
4.3. (p27) 2.3 Matrix rings
4.4. (p28) 2.4 Quaternions
4.5. (p29) 2.5 Ideals, quotient rings
4.6. (p30) 2.6 Ideals and quotient rings for Z
4.7. (p31) 2.7 Homomorphisms of rings. Basic theorems
4.8. (p32) 2.8 Anti-isomorphisms
4.9. (p33) 2.9 Field of fractions of a commutative domain
4.10. (p34) 2.10 Polynomial rings
4.11. (p35) 2.11 Some properties of polynomial rings and applications
4.12. (p36) 2.12 Polynomial functions
4.13. (p37) 2.13 Symmetric polynomials
4.14. (p38) 2.14 Factorial monoids and rings
4.15. (p39) 2.15 Principal ideal domains and Euclidean domains
4.16. (p40) 2.16 Polynomial extensions of factorial domains
4.17. (p41) 2.17 "Rngs" (rings without unit)
5. (p42) 3 MODULES OVER A PRINCIPAL IDEAL DOMAIN
5.1. (p43) 3.1 Ring of endomorphisms of an abelian group
5.2. (p44) 3.2 Left and right modules
5.3. (p45) 3.3 Fundamental concepts and results
5.4. (p46) 3.4 Free modules and matrices
5.5. (p47) 3.5 Direct sums of modules
5.6. (p48) 3.6 Finitely generated modules over a p.i.d. Preliminary results
5.7. (p49) 3.7 Equivalence of matrices with entries in a p. i. d.
5.8. (p50) 3.8 Structure theorem for finitely generated modules over a p. i. d.
5.9. (p51) 3.9 Torsion modules, primary components, invariance theorem
5.10. (p52) 3.10 Applications to abelian groups and to linear transformations
5.11. (p53) 3.11 The ring of endomorphisms of a finitely generated module over a p. i. d.
6. (p54) 4 GALOIS THEORY OF EQUATIONS
6.1. (p55) 4.1 Preliminary results, some old, some new
6.2. (p56) 4.2 Construction with straight-edge and compass
6.3. (p57) 4.3 Splitting field of a polynomial
6.4. (p58) 4.4 Multiple roots
6.5. (p59) 4.5 The Galois group. The fundamental Galois pairing
6.6. (p60) 4.6 Some results on finite groups
6.7. (p61) 4.7 Galois' criterion for solvability by radicals
6.8. (p62) 4.8 The Galois group as permutation group of the roots
6.9. (p63) 4.9 The general equation of the nth degree
6.10. (p64) 4.10 Equations with rational coefficients and symmetric group as Galois group
6.11. (p65) 4.11 Constructible regular n-gons
6.12. (p66) 4.12 Transcendence of e and π. The Lindemann-Weierstrass theorem
6.13. (p67) 4.13 Finite fields
6.14. (p68) 4.14 Special bases for finite dimensional extension fields
6.15. (p69) 4.15 Traces and norms
7. (p70) 5 REAL POLYNOMIAL EQUATIONS AND INEQUALITIES
7.1. (p71) 5.1 Ordered fields. Real closed fields
7.2. (p72) 5.2 Sturm's theorem
7.3. (p73) 5.3 Formalized Euclidean algorithm and Sturm's theorem
7.4. (p74) 5.4 Elimination procedures. Resultants
7.5. (p75) 5.5 Decision method for an algebraic curve
7.6. (p76) 5.6 Generalized Sturm's theorem. Tarski's principle
8. (p77) 6 METRIC VECTOR SPACES AND THE CLASSICAL GROUPS
8.1. (p78) 6.1 Linear functions and bilinear forms
8.2. (p79) 6.2 Alternate forms
8.3. (p80) 6.3 Quadratic forms and symmetric bilinear forms
8.4. (p81) 6.4 Basic concepts of orthogonal geometry
8.5. (p82) 6.5 Witt's cancellation theorem
8.6. (p83) 6.6 The theorem of Cartan-Dieudonne
8.7. (p84) 6.7 Structure of the linear group Ln(F)
8.8. (p85) 6.8 Structure of orthogonal groups
8.9. (p86) 6.9 Symplectic geometry. The symplectic group
8.10. (p87) 6.10 Orders of orthogonal and symplectic groups over a finite field
8.11. (p88) 6.11 Postscript on hermitian forms and unitary geometry
9. (p89) 7 ALGEBRAS OVER A FIELD
9.1. (p90) 7.1 Definition and examples of associative algebras
9.2. (p91) 7.2 Exterior algebras. Application to determinants
9.3. (p92) 7.3 Regular matrix representations of associative algebras. Norms and traces
9.4. (p93) 7.4 Change of base field. Transitivity of trace and norm
9.5. (p94) 7.5 Non-associative algebras. Lie and Jordan algebras
9.6. (p95) 7.6 Hurwitz' problem. Composition algebras
9.7. (p96) 7.7 Frobenius' and Wedderburn's theorems on associative division algebras
10. (p97) 8 LATTICES AND BOOLEAN ALGEBRAS
10.1. (p98) 8.1 Partially ordered sets and lattices
10.2. (p99) 8.2 Distributivity and modularity
10.3. (p100) 8.3 The theorem of Jordan-Holder-Dedekind
10.4. (p101) 8.4 The lattice of subspaces of a vector space. Fundamental theorem of projective geometry
10.5. (p102) 8.5 Boolean algebras
10.6. (p103) 8.6 The Mobius function of a partially ordered set
11. (p104) Index
备用描述
Euclidean and Non-Euclidean Geometries presents the discovery of non-Euclidean geometry and the reformulation of the foundations of Euclidean geometry.
开源日期
2023-06-28
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。