nexusstc/Bioinformatic and Statistical Analysis of Microbiome Data/ad78863c096fa67b69f921dd916c688e.pdf
Bioinformatic and Statistical Analysis of Microbiome Data 🔍
Youngchul Kim
Springer US : Imprint: Humana, Methods in molecular biology (Clifton, N.J.), New York, NY, 2023
英语 [en] · PDF · 1.3MB · 2023 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
Since advances in next-generation sequencing (NGS) technique enabled to investigate uncultured microbiota and their genomes in unbiased manner, many microbiome researches have been reporting strong evidences for close links of microbiome to human health and disease. Bioinformatic and statistical analysis of NGS-based microbiome data are essential components in those microbiome researches to explore the complex composition of microbial community and understand the functions of community members in relation to host and environment. This chapter introduces bioinformatic analysis methods that generate taxonomy and functional feature count table along with phylogenetic tree from raw NGS microbiome data and then introduce statistical methods and machine learning approaches for analyzing the outputs of the bioinformatic analysis to infer the biodiversity of a microbial community and unravel host-microbiome association. Understanding the advantages and limitations of the analysis methods will help readers use the methods correctly in microbiome data analysis and may give a new opportunity to develop new analytic techniques for microbiome research.
备用文件名
lgli/978-1-0716-2986-4_10.pdf
备用文件名
lgrsnf/978-1-0716-2986-4_10.pdf
备用文件名
zlib/no-category/Youngchul Kim/Bioinformatic and Statistical Analysis of Microbiome Data_25375095.pdf
备选标题
Statistical Genomics
备选作者
Brooke Fridley, Xuefeng Wang
备用出版商
SPRINGER-VERLAG NEW YORK
备用出版商
Humana Press
备用版本
Methods in Molecular Biology, 1st ed. 2023, New York, NY, 2023
备用版本
Methods in molecular biology, 2629, S.l, 2023
备用版本
United States, United States of America
元数据中的注释
{"container_title":"Methods in Molecular Biology","first_page":183,"isbns":["1071629859","1071629867","9781071629857","9781071629864"],"issns":["1064-3745","1940-6029"],"last_page":229,"publisher":"Springer"}
元数据中的注释
Referenced by: doi:10.1038/s41579-020-0433-9 doi:10.1038/nm.4517 doi:10.3389/fmicb.2021.670336 doi:10.1158/1538-7445.am2019-3326 doi:10.1038/nmeth.f.303 doi:10.1128/aem.00062-07 doi:10.1038/nmeth.2604 doi:10.1073/pnas.1409644111 doi:10.1038/nmeth.3869 doi:10.1128/msystems.00191-16 doi:10.1038/s41467-019-13036-1 doi:10.1016/s0022-2836(05)80360-2 doi:10.1093/bioinformatics/btq461 doi:10.1186/s40168-018-0470-z doi:10.1038/s41564-018-0156-0 doi:10.1093/nar/gkf436 doi:10.1093/molbev/msp077 doi:10.1111/2041-210x.12760 doi:10.1093/bioinformatics/bts198 doi:10.1186/1471-2105-11-538 doi:10.1093/bioinformatics/btu170 doi:10.1371/journal.pone.0185056 doi:10.7554/elife.65088 doi:10.1186/gb-2014-15-3-r46 doi:10.7717/peerj-cs.104 doi:10.1038/nmeth.3176 doi:10.1101/gr.5969107 doi:10.1038/s41592-018-0176-y doi:10.1093/bioinformatics/btu739 doi:10.1186/1471-2105-11-119 doi:10.3389/fmicb.2021.613791 doi:10.3389/fmicb.2020.607325 doi:10.1186/s40168-018-0605-2 doi:10.1093/biostatistics/kxy020 doi:10.1038/nmeth.1650 doi:10.1371/journal.pone.0054703 doi:10.1186/s40168-017-0237-y doi:10.1038/nmeth.2658 doi:10.3402/mehd.v26.27663 doi:10.1093/bioinformatics/btw313 doi:10.1371/journal.pone.0061217 doi:10.1093/bioinformatics/btu393 doi:10.2307/2531532 doi:10.1002/j.1538-7305.1948.tb01338.x doi:10.2307/3543712 doi:10.1016/0006-3207(92)91201-3 doi:10.1111/1365-2664.12639 doi:10.7717/peerj.157 doi:10.1093/bioinformatics/btq166 doi:10.3389/fmicb.2019.02407 doi:10.1111/j.1469-8137.1912.tb05611.x doi:10.2307/1942268 doi:10.1093/bioinformatics/bty175 doi:10.1186/s12859-015-0640-y doi:10.1037/h0071325 doi:10.1007/bf02289565 doi:10.1007/bf02289694 doi:10.1073/pnas.1530509100 doi:10.3389/fmicb.2017.00454 doi:10.1111/j.1442-9993.1993.tb00438.x doi:10.1111/j.1442-9993.2001.01070.pp.x doi:10.1093/bioinformatics/btaa951 doi:10.1007/978-1-4614-7846-1_16 doi:10.1186/s40168-017-0239-9 doi:10.1002/gepi.22030 doi:10.3389/fgene.2019.00458 doi:10.1371/journal.pone.0052078 doi:10.1016/j.tpb.2010.07.002 doi:10.1371/journal.pcbi.1000352 doi:10.2307/2288652 doi:10.1093/nar/gkv007 doi:10.1093/nar/gkv007 doi:10.1089/cmb.2015.0157 doi:10.1371/journal.pone.0129606 doi:10.1111/2041-210x.13559 doi:10.1186/s12859-016-1441-7 doi:10.1371/journal.pone.0067019 doi:10.1186/2049-2618-2-15 doi:10.1038/s12276-019-0313-4 doi:10.1186/gb-2011-12-6-r60 doi:10.1016/j.cmet.2017.04.001 doi:10.1023/a:1010933404324 doi:10.1186/gb-2012-13-9-r79 doi:10.1371/journal.pcbi.1009442 doi:10.1371/journal.pone.0027310 doi:10.7717/peerj.2584 doi:10.1002/cpz1.59 doi:10.1186/2049-2618-2-26 doi:10.7717/peerj.1165 doi:10.1101/gr.186072.114 doi:10.1658/1100-9233(2003)014[0927:vaporf]2.0.co;2 doi:10.1038/163688a0 doi:10.1016/j.ajhg.2015.04.003
备用描述
Chapter 10: Bioinformatic and Statistical Analysis of Microbiome Data
1 Introduction
2 Datasets Used to Illustrate the Methods
3 Bioinformatic and Statistical Methods for Microbiome Data Analysis
3.1 Overview of Bioinformatic Pipeline for Raw Sequencing Data Analysis
3.2 Bioinformatic Analysis of Marker-Gene Sequencing Data
3.2.1 Sequencing Error Control and Variant Call
3.2.2 Taxonomic Classification
3.2.3 Phylogenetic Tree Construction
3.3 Bioinformatic Analysis of Metagenome Shotgun Sequencing Data
3.3.1 Quality Control and Decontamination
3.3.2 Reference-Based Taxonomy Identification
3.3.3 Reference-Based Functional Classification
3.3.4 De Novo Metagenomic Assembly Analysis
3.4 Statistical Analysis of Microbiome Data
3.4.1 Structure of Microbiome Data
3.4.2 Property of Microbiome Data
3.4.3 Quality Control of Microbiome Data
3.4.4 Normalization of Microbiome Data
3.4.5 Exploratory Analysis of Microbiome Data
3.4.6 Alpha Diversity
3.4.7 Beta Diversity
3.4.8 Microbiome-Wide Association Analysis
3.4.9 Community-Level Association Analysis Based on Alpha Diversity
3.4.10 Community-Level Association Analysis Based on Beta Diversity
3.4.11 Biodiversity-Free Test of Microbiome Community Association
3.4.12 Univariate Feature-Wise Associated Analysis Methods
3.4.13 Visualization of Univariate Association Analysis
3.4.14 Machine Learning Methods for Microbial Biomarker Discovery
4 Conclusions
References
1 Introduction
2 Datasets Used to Illustrate the Methods
3 Bioinformatic and Statistical Methods for Microbiome Data Analysis
3.1 Overview of Bioinformatic Pipeline for Raw Sequencing Data Analysis
3.2 Bioinformatic Analysis of Marker-Gene Sequencing Data
3.2.1 Sequencing Error Control and Variant Call
3.2.2 Taxonomic Classification
3.2.3 Phylogenetic Tree Construction
3.3 Bioinformatic Analysis of Metagenome Shotgun Sequencing Data
3.3.1 Quality Control and Decontamination
3.3.2 Reference-Based Taxonomy Identification
3.3.3 Reference-Based Functional Classification
3.3.4 De Novo Metagenomic Assembly Analysis
3.4 Statistical Analysis of Microbiome Data
3.4.1 Structure of Microbiome Data
3.4.2 Property of Microbiome Data
3.4.3 Quality Control of Microbiome Data
3.4.4 Normalization of Microbiome Data
3.4.5 Exploratory Analysis of Microbiome Data
3.4.6 Alpha Diversity
3.4.7 Beta Diversity
3.4.8 Microbiome-Wide Association Analysis
3.4.9 Community-Level Association Analysis Based on Alpha Diversity
3.4.10 Community-Level Association Analysis Based on Beta Diversity
3.4.11 Biodiversity-Free Test of Microbiome Community Association
3.4.12 Univariate Feature-Wise Associated Analysis Methods
3.4.13 Visualization of Univariate Association Analysis
3.4.14 Machine Learning Methods for Microbial Biomarker Discovery
4 Conclusions
References
备用描述
This volume provides a collection of protocols from researchers in the statistical genomics field. Chapters focus on integrating genomics with other "omics" data, such as transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Statistical Genomics hopes that by covering these diverse and timely topics researchers are provided insights into future directions and priorities of pan-omics and the precision medicine era
开源日期
2023-07-07
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.