Hardy Spaces and Potential Theory on C[superscript 1] Domains in Riemannian Manifolds 🔍
Martin Dindoš
American Mathematical Society, Memoirs of the American Mathematical Society; 894, 2007
英语 [en] · PDF · 9.2MB · 2007 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/upload/zlib · Save
描述
The author studies Hardy spaces on $C^1$ and Lipschitz domains in Riemannian manifolds. Hardy spaces, originally introduced in 1920 in complex analysis setting, are invaluable tool in harmonic analysis. For this reason these spaces have been studied extensively by many authors. The main result is an equivalence theorem proving that the definition of Hardy spaces by conjugate harmonic functions is equivalent to the atomic definition of these spaces. The author establishes this theorem in any dimension if the domain is $C^1$, in case of a Lipschitz domain the result holds if dim $M\le 3$. The remaining cases for Lipschitz domains remain open. This result is a nontrivial generalization of flat (${\mathbb R}^n$) equivalence theorems due to Fefferman, Stein, Dahlberg and others. The material presented here required to develop potential theory approach for $C^1$ domains on Riemannian manifolds in the spirit of earlier works by Fabes, Jodeit and Rivière and recent results by Mitrea and Taylor. In particular, the first part of this work is of interest in itself, since the author considers the boundary value problems for the Laplace-Beltrami operator. He proves that both Dirichlet and Neumann problem for Laplace-Beltrami equation are solvable for any given boundary data in $L^p(\partial\Omega)$, where $1. The same remains true in Hardy spaces $\hbar^p(\partial\Omega)$ for $(n-1)/n. In the whole work the author works with Riemannian metric $g$ with smallest possible regularity. In particular, mentioned results for the Laplace-Beltrami equation require Hölder class regularity of the metric tensor; the equivalence theorem requires $g$ in $C^{1,1}$.
备用文件名
nexusstc/Hardy Spaces and Potential Theory on C1 Domains in Riemannian Manifolds/badaa809eb90270a6393d4c4796b4720.pdf
备用文件名
lgli/DINDOS - Hardy Spaces.pdf
备用文件名
lgrsnf/DINDOS - Hardy Spaces.pdf
备用文件名
zlib/Mathematics/Mathematical Theory/Martin Dindos/Hardy Spaces and Potential Theory on C1 Domains in Riemannian Manifolds_24385953.pdf
备选标题
Hardy Spaces and Potential Theory on $C^1$ Domains in Riemannian Manifolds (Memoirs of the American Mathematical Society)
备选标题
Hardy spaces and potential theory on Cp1s domains in Riemannian manifolds
备选作者
Dindoš, Martin
备选作者
Martin Dindoš
备用版本
Memoirs of the American mathematical society -- No 894. vol. 191, Providence (R. I.), United States, 2008
备用版本
Memoirs of the American Mathematical Society -- no. 894, Providence, RI, Rhode Island, 2008
备用版本
United States, United States of America
备用版本
December 28, 2007
元数据中的注释
producers:
3-Heights(TM) PDF Producer 2.1.15.0 (http://www.pdf-tools.com)
3-Heights(TM) PDF Producer 2.1.15.0 (http://www.pdf-tools.com)
元数据中的注释
{"isbns":["0821840436","9780821840436"],"last_page":78,"publisher":"American Mathematical Society","series":"Memoirs of the American Mathematical Society; 894"}
元数据中的注释
"Volume 191, number 894 (fourth of 5 numbers)."
Includes bibliographical references
Includes bibliographical references
元数据中的注释
Библиогр.: с. 77-78
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 003385998
=005 20080409154954.0
=008 080221s2008\\\\xxu||||\\\\\\\0||\|\eng|d
=017 \\ $a ИП10565-08 $b РГБ
=020 \\ $a 978-0-8218-4043-6 (alk. paper)
=040 \\ $a RuMoRGB $b rus $e rcr
=041 0\ $a eng
=044 \\ $a xxu
=084 \\ $a В181.222.11,0 $2 rubbk
=084 \\ $a В161.626.11,0 $2 rubbk
=084 \\ $a В161.522,0 $2 rubbk
=100 1\ $a Dindoš, Martin
=245 00 $a Hardy spaces and potential theory on C1 domains in Riemannian manifolds $c Martin Dindoš
=260 \\ $a Providence (R. I.) $b Amer. math. soc. $c 2008
=300 \\ $a VI, 78 с. $c 26 см
=490 0\ $a Memoirs of the American mathematical society $v № 894. vol. 191 $x 0065-9266
=504 \\ $a Библиогр.: с. 77-78
=650 \7 $a Физико-математические науки -- Математика -- Геометрия -- Дифференциальная геометрия -- Дифференциальная геометрия многомерного пространства -- Геометрия римановых пространств. Риманова геометрия -- Многообразия, вложенные в римановы пространства $2 rubbk
=650 \7 $a Физико-математические науки -- Математика -- Математический анализ -- Дифференциальные уравнения с частными производными -- Линейные и квазилинейные уравнения и системы высших порядков -- Уравнения второго порядка эллиптического типа -- Теория потенциала $2 rubbk
=650 \7 $a Физико-математические науки -- Математика -- Математический анализ -- Теория функций комплексного переменного -- Пространства аналитических функций $2 rubbk
=773 08 $7 c2as $a American mathematical society $t Memoirs of the American mathematical society $g № 894 $x 0065-9266
=852 4\ $a РГБ $b FB $j 25 7/18-8 $x 80
=001 003385998
=005 20080409154954.0
=008 080221s2008\\\\xxu||||\\\\\\\0||\|\eng|d
=017 \\ $a ИП10565-08 $b РГБ
=020 \\ $a 978-0-8218-4043-6 (alk. paper)
=040 \\ $a RuMoRGB $b rus $e rcr
=041 0\ $a eng
=044 \\ $a xxu
=084 \\ $a В181.222.11,0 $2 rubbk
=084 \\ $a В161.626.11,0 $2 rubbk
=084 \\ $a В161.522,0 $2 rubbk
=100 1\ $a Dindoš, Martin
=245 00 $a Hardy spaces and potential theory on C1 domains in Riemannian manifolds $c Martin Dindoš
=260 \\ $a Providence (R. I.) $b Amer. math. soc. $c 2008
=300 \\ $a VI, 78 с. $c 26 см
=490 0\ $a Memoirs of the American mathematical society $v № 894. vol. 191 $x 0065-9266
=504 \\ $a Библиогр.: с. 77-78
=650 \7 $a Физико-математические науки -- Математика -- Геометрия -- Дифференциальная геометрия -- Дифференциальная геометрия многомерного пространства -- Геометрия римановых пространств. Риманова геометрия -- Многообразия, вложенные в римановы пространства $2 rubbk
=650 \7 $a Физико-математические науки -- Математика -- Математический анализ -- Дифференциальные уравнения с частными производными -- Линейные и квазилинейные уравнения и системы высших порядков -- Уравнения второго порядка эллиптического типа -- Теория потенциала $2 rubbk
=650 \7 $a Физико-математические науки -- Математика -- Математический анализ -- Теория функций комплексного переменного -- Пространства аналитических функций $2 rubbk
=773 08 $7 c2as $a American mathematical society $t Memoirs of the American mathematical society $g № 894 $x 0065-9266
=852 4\ $a РГБ $b FB $j 25 7/18-8 $x 80
备用描述
<p>The author studies Hardy spaces on $C^1$ and Lipschitz domains in Riemannian manifolds. Hardy spaces, originally introduced in 1920 in complex analysis setting, are invaluable tool in harmonic analysis. For this reason these spaces have been studied extensively by many authors. The main result is an equivalence theorem proving that the definition of Hardy spaces by conjugate harmonic functions is equivalent to the atomic definition of these spaces. The author establishes this theorem in any dimension if the domain is $C^1$, in case of a Lipschitz domain the result holds if dim $M\le 3$. The remaining cases for Lipschitz domains remain open. This result is a nontrivial generalization of flat (${\mathbb R}^n$) equivalence theorems due to Fefferman, Stein, Dahlberg and others. The material presented here required to develop potential theory approach for $C^1$ domains on Riemannian manifolds in the spirit of earlier works by Fabes, Jodeit and Riviere and recent results by Mitrea and Taylor. In particular, the first part of this work is of interest in itself, since the author considers the boundary value problems for the Laplace-Beltrami operator. He proves that both Dirichlet and Neumann problem for Laplace-Beltrami equation are solvable for any given boundary data in $L^p(\partial\Omega)$, where $1<p<\infty$. The same remains true in Hardy spaces $\hbar^p(\partial\Omega)$ for $(n-1)/n<p\le 1$. In the whole work the author works with Riemannian metric $g$ with smallest possible regularity. In particular, mentioned results for the Laplace-Beltrami equation require Holder class regularity of the metric tensor; the equivalence theorem requires $g$ in $C^{1,1}$.</p>
开源日期
2022-12-28
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.