Initiation to Global Finslerian Geometry (Volume 68) (North-Holland Mathematical Library, Volume 68) 🔍
Hassan Akbar-Zadeh Doctorat d Etat en Mathématiques Pures June 1961 La Sorbonne Paris. Elsevier Science & Technology Books, North-Holland Mathematical Library, North-Holland mathematical library 68, 1, 2006
英语 [en] · DJVU · 3.6MB · 2006 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, projective and conformal vector fields on the unitary tangent fibre bundle. Key features - Theory of connections of vectors and directions on the unitary tangent fibre bundle. - Complete list of Bianchi identities for a regular conection of directions. - Geometry of generalized Einstein manifolds. - Classification of Finslerian manifolds. - Affine, isometric, conformal and projective vector fields on the unitary tangent fibre bundle. - Theory of connections of vectors and directions on the unitary tangent fibre bundle. - Complete list of Bianchi identities for a regular conection of directions. - Geometry of generalized Einstein manifolds. - Classification of Finslerian manifolds. - Affine, isometric, conformal and projective vector fields on the unitary tangent fibre bundle.
备用文件名
lgrsnf/M_Mathematics/MD_Geometry and topology/MDdg_Differential geometry/Akbar-Zadeh H. Initiation to global Finslerian geometry (NHML068, Elsevier, 2006)(ISBN 0444521062)(600dpi)(K)(T)(O)(264s)_MDdg_.djvu
备用文件名
nexusstc/Initiation to Global Finslerian Geometry/bdac8064816680e6fee88f6b10a405fb.djvu
备用文件名
zlib/Mathematics/Hassan Akbar-Zadeh Doctorat d Etat en Mathématiques Pures June 1961 La Sorbonne Paris./Initiation to global Finslerian geometry_444401.djvu
备选标题
Initiation of global Finslerian geometry
备选作者
Akbar-Zadeh Doctorat d Etat en Mathématiques Pures June 1961 La Sorbonne Paris., Hassan
备用出版商
Wolters Kluwer Legal & Regulatory U.S.
备用出版商
Woodhead Publishing Ltd
备用出版商
John Murray Press
备用出版商
Aspen Publishers
备用出版商
Focal Press
备用版本
North-Holland mathematical library ;, v. 68, 1st ed., Amsterdam, Boston, Netherlands, 2006
备用版本
North-Holland mathematical library, v. 68, Burlington, 2006
备用版本
North Holland mathematical library, 1. ed, Amsterdam, 2006
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
United States, United States of America
备用版本
Elsevier Ltd., Amsterdam, 2006
元数据中的注释
Kolxo3 -- 22
元数据中的注释
lg8069
元数据中的注释
{"container_title":"North-Holland Mathematical Library","edition":"1","isbns":["0080461700","0444521062","9780080461700","9780444521064"],"issns":["0924-6509"],"last_page":264,"publisher":"Elsevier","series":"North-Holland mathematical library 68"}
元数据中的注释
Includes bibliographical references and index.
备用描述
Cover......Page 1
Series......Page 2
Title page......Page 3
Date-line......Page 4
Preface......Page 5
Introduction......Page 6
CONTENTS......Page 8
1. Fibre Bundles $V(M)$ and $W(M)$......Page 15
2. Frames and Co-frames......Page 16
3. Tensors and Tensor forms......Page 18
4. Linear connections......Page 19
5. Absolute differential in a linear connection. Regular linear connection......Page 20
6. Exterior differential forms......Page 23
1. Torsion tensors......Page 27
2. Curvature tensors......Page 28
8. Particular case of a linear connection of directions. Conditions of reduction......Page 31
9. Ricci identities......Page 32
10. Bianchi identities......Page 34
11. Torsion and Curvature defined by a covariant derivation......Page 35
1. Metric manifolds......Page 37
2. Euclidean connections......Page 38
3. The system of generators on $W$......Page 41
4. Special connections......Page 44
5. Case of orthonormal frames and local coordinates for the class of special connections......Page 46
6. Finslerian manifolds......Page 47
7. Finslerian connections......Page 50
8. Curvature tensors of the Finslerian connection......Page 54
9. Almost Euclidean connections......Page 58
Chapter III Isometries and affine vector fields on the unitary tangent fibre bundle......Page 62
1. Local group of 1-parameter local transformations and Lie derivative......Page 63
2. Local invariant sections......Page 67
3. Introduction of a regular linear connection......Page 68
4. The Lie derivative of a tensor in the large sense......Page 71
5. The Lie derivative of the coefficients of a regular linear connection......Page 72
6. Fundamental formula......Page 75
7. Divergence formulas......Page 78
8. Infinitesimal isometries, the compact case......Page 81
9. Ricci curvatures and Infinitesimal isometries......Page 84
10. Infinitesimal affine transformations......Page 89
11. Affine infinitesimal transformations and Covariant Derivations......Page 90
12. The group $Kz(L)$......Page 92
13. Transitive algebra of affine infinitesimal transformations......Page 93
14. The Lie Algebra $L$......Page 95
15. The case of Finslerian manifolds......Page 98
16. Case of infinitesimal isometries......Page 100
1. The Laplacian defined on the unitary tangent fibre bundle and the Finslerian curvature......Page 103
2. Case of a manifold with constant sectional curvature......Page 109
1. Fundamental lemma, Compact case......Page 112
2. Variations of scalar curvatures......Page 115
3. Generalized Einstein manifolds......Page 119
4. Second variationals of the integral $I(g_t)$......Page 126
5. Case of a conformal infinitesimal deformation......Page 132
I. Properties of compact Finslerian manifolds of non-negative curvature......Page 136
1. Landsberg manifolds......Page 137
2. Finslerian manifolds with minima fibration......Page 139
3. Case of isotropic manifolds......Page 141
4. Calculation of $(\delta A)^2$ when $(M, g)$ is a manifold with minima fibration......Page 143
5. Case when $(M, g)$ is a Landsberg manifold. The calculation of $||\nabla_i A_j||^2$......Page 145
6. Case of compact Berwald manifolds......Page 146
7. Finslerian manifolds whose fibres are totally geodesic or minima......Page 149
1. The first variational of $I(g_t)$......Page 152
2. Second variational......Page 155
Chapter VI Finslerian manifolds of constant sectional curvatures......Page 157
1. Finslerian manifolds......Page 158
2. Indicatrices......Page 161
3. Isotropic manifolds......Page 164
4. Properties of curvature tensors in the isotropic case......Page 165
A. Case of Berwald connection......Page 167
B. Case of Finslerian connection......Page 170
2. Necessary and sufficient conditions for an isotropic Finslerian manifold to be of constant sectional curvature......Page 171
3. Locally Minkowskian manifolds......Page 176
4. Compact isotropic manifolds with strictly negative curvature......Page 178
1. Operator $D^1$ - the isotropic case......Page 181
2. Complete manifolds with strictly negative constant sectional curvature......Page 183
3. Complete manifolds with strictly positive constant sectional curvature......Page 185
4. Complete manifolds with zero sectional curvature......Page 187
1. Finslerian submanifolds......Page 189
2. Induced and intrinsic connections of Berwald......Page 193
3. Totally geodesic submanifolds......Page 195
4. The plane axioms......Page 196
1. Infinitesimal proj ecti ve transformations......Page 205
2. Other characterizations of infinitesimal projective transformations......Page 208
3. Curvature and infinitesimal projective transformations......Page 211
4. Restricted projective vector fields......Page 215
5. Projective invariants......Page 219
6. Case when Ricci directional curvature satisfies certain conditions......Page 224
7. The complete case......Page 225
8. Case where the Ricci directional curvature is a strictly positive constant......Page 228
9. The second variational of the length......Page 230
10. Homeomorphie to the sphere......Page 232
Chapter VIII Conformal vector fields on the unitary tangent fibre bundle......Page 236
1. The Co-differential of a 2-form......Page 237
2. A Lemma......Page 239
3. A characterization of conformal infinitesimal transformations......Page 241
4. Curvature and Infinitesimal Transformation in the compact case......Page 243
5. Case when $M$ is compact with scalar curvature $H$ is constant......Page 248
6. Case when $X=X_i(z) dx^i$ is semi-closed......Page 253
References......Page 257
Index......Page 260
备用描述
After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, projective and conformal vector fields on the unitary tangent fibre bundle.<p><br><br>Key features<p><br><br>- Theory of connections of vectors and directions on the unitary tangent fibre bundle. <br>- Complete list of Bianchi identities for a regular conection of directions. <br>- Geometry of generalized Einstein manifolds. <br>- Classification of Finslerian manifolds. <br>- Affine, isometric, conformal and projective vector fields on the unitary tangent fibre bundle.<br><br>- Theory of connections of vectors and directions on the unitary tangent fibre bundle. <br>- Complete list of Bianchi identities for a regular conection of directions. <br>- Geometry of generalized Einstein manifolds. <br>- Classification of Finslerian manifolds. <br>- Affine, isometric, conformal and projective vector fields on the unitary tangent fibre bundle.
备用描述
After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, projective and conformal vector fields on the unitary tangent fibre bundle. P Key featuresP - Theory of connections of vectors and directions on the unitary tangent fibre bundle. - Complete list of Bianchi identities for a regular connection of directions. - Geometry of generalized Einstein manifolds. - Classification of Finslerian manifolds. - Affine, isometric, conformal and projective vector fields on the unitary tangent fibre bundle. - Theory of connections of vectors and directions on the unitary tangent fibre bundle. - Complete list of Bianchi identities for a regular conection of directions. - Geometry of generalized Einstein manifolds. - Classification of Finslerian manifolds. - Affine, isometric, conformal and projective vector fields on the unitary tangent fibre bundle
备用描述
After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, this book gives a treatment of this geometry. It develops the basic notions and methods to reach the global problems in Finslerian Geometry
开源日期
2009-07-20
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。