Physics of the Interstellar and Intergalactic Medium (Princeton Series in Astrophysics, 19) 🔍
Bruce T. Draine Princeton University Press, Princeton series in astrophysics, Princeton, New Jersey, 2011
英语 [en] · PDF · 12.0MB · 2011 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/zlib · Save
描述
An essential resource for graduate students and astrophysicists
This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves.
Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resource for working astrophysicists.
Essential textbook on the physics of the interstellar and intergalactic medium
Based on a course taught by the author for more than twenty years at Princeton University
Covers radiative processes, fluid dynamics, cosmic rays, astrochemistry, interstellar dust, and more
Discusses the physical state and distribution of the ionized, atomic, and molecular phases of the interstellar medium
Reviews diagnostics using emission and absorption lines
Features color illustrations and detailed reference materials in appendices
Instructor's manual with problems and solutions (available only to teachers)
备用文件名
lgrsnf/G:\!genesis\_add\!woodhead\kolxo372\P_Physics\PAp_Astrophysics\Draine B.T. Physics of the interstellar and intergalactic medium (PUP, 2011)(ISBN 9780691122137)(O)(567s)_PAp_.pdf
备用文件名
lgli/P_Physics/PAp_Astrophysics/Draine B.T. Physics of the interstellar and intergalactic medium (PUP, 2011)(ISBN 9780691122137)(O)(567s)_PAp_.pdf
备用文件名
nexusstc/Physics of the Interstellar and Intergalactic Medium/c405770ec7ffba615cf8a20a570f9c4a.pdf
备用文件名
zlib/Astronomy/Bruce T Draine/Physics of the interstellar and intergalactic medium_2462441.pdf
备选标题
Dead Ringers How Outsourcing Is Changing the Way Indians Understand Themselves
备选作者
Draine, Bruce T.
备用出版商
Princeton University, Department of Art & Archaeology
备用出版商
Princeton Electronic
备用版本
Princeton Series in Astrophysics, Princeton, NJ, 2010
备用版本
Princeton University Press, Princeton, N.J., 2011
备用版本
United States, United States of America
备用版本
3, 20101220
备用版本
2011-01-09
元数据中的注释
kolxo3 -- 72
元数据中的注释
lg1288556
元数据中的注释
{"isbns":["069112213X","0691122148","1400839084","9780691122137","9780691122144","9781400839087"],"last_page":560,"publisher":"Princeton University Press","series":"Princeton series in astrophysics"}
元数据中的注释
Includes bibliographical references and index.
备用描述
Machine Generated Contents Note: 1. Introduction -- 1.1. Organization Of The Ism: Characteristic Phases -- 1.2. Elemental Composition -- 1.3. Energy Densities -- 2. Collisional Processes -- 2.1. Collisional Rate Coefficients -- 2.2. Inverse-square Law Forces: Elastic Scattering -- 2.3. Electron-ion Inelastic Scattering: Collision Strength & Omega;ul -- 2.4. Ion-neutral Collision Rates -- 2.5. Electron-neutral Collision Rates -- 2.6. Neutral-neutral Collision Rates -- 3. Statistical Mechanics And Thermodynamic Equilibrium -- 3.1. Partition Functions -- 3.2. Detailed Balance: The Law Of Mass Action -- 3.3. Ionization And Recombination -- 3.4. Saha Equation -- 3.5. Detailed Balance: Ratios Of Rate Coefficients -- 3.6. Detailed Balance: Ratios Of Cross Sections -- 3.7. Example: Three-body Recombination -- 3.8. Departure Coefficients -- 4. Energy Levels Of Atoms And Ions -- 4.1. Single-electron Orbitals -- 4.2. Configurations -- 4.3. Spectroscopic Terms -- 4.4. Fine Structure: Spin-orbit Interaction. 4.5. Designation Of Energy Levels For Atoms And Ions: Spectroscopic Notation -- 4.6. Hyperfine Structure: Interaction With Nuclear Spin -- 4.7. Zeeman Effect -- 4.8. Further Reading -- 5. Energy Levels Of Molecules -- 5.1. Diatomic Molecules -- 5.2. Energy Levels Of Nonlinear Molecules -- 5.3. Zeeman Splitting -- 5.4. Further Reading -- 6. Spontaneous Emission, Stimulated Emission, And Absorption -- 6.1. Emission And Absorption Of Photons -- 6.2. Absorption Cross Section -- 6.3. Oscillator Strength -- 6.4. Intrinsic Line Profile -- 6.5. Doppler Broadening: The Voigt Line Profile -- 6.6. Transition From Doppler Core To Damping Wings -- 6.7. Selection Rules For Radiative Transitions -- 7. Radiative Transfer -- 7.1. Physical Quantities -- 7.2. Equation Of Radiative Transfer -- 7.3. Emission And Absorption Coefficients -- 7.4. Integration Of The Equation Of Radiative Transfer -- 7.5. Maser Lines -- 8. Hi 21-cm Emission And Absorption -- 8.1. Hi Emissivity And Absorption Coefficient -- 8.2. Optically Thin Cloud -- 8.3. Spin Temperature Determination Using Background Radio Sources. 9. Absorption Lines: The Curve Of Growth -- 9.1. Absorption Lines -- 9.2. Optically Thin Absorption, & Tau;0 <1 -- 9.3. Flat Portion Of The Curve Of Growth, 10 <& Tau;0 <& Tau;damp -- 9.4. Damped Portion Of The Curve Of Growth, & Tau;0> & Tau;damp -- 9.5. Approximation Formulae For W -- 9.6. Doublet Ratio -- 9.7. Lyman Series Of Hydrogen: Ly & Alpha;, Ly & Beta;, Ly & Gamma; -- 9.8. Lyman Limit -- 9.9. H2: Lyman And Werner Bands -- 9.10. Metal Lines -- 9.11. Abundances In Hi Gas -- 10. Emission And Absorption By A Thermal Plasma -- 10.1. Free-free Emission (bremsstrahlung) -- 10.2. Gaunt Factor -- 10.3. Frequency-averaged Gaunt Factor -- 10.4. Free-free Absorption -- 10.5. Emission Measure -- 10.6. Free-bound Transitions: Recombination Continuum -- 10.7. Radio Recombination Lines -- 11. Propagation Of Radio Waves Through The Ism -- 11.1. Dispersion Relation For Cold Plasmas -- 11.2. Dispersion -- 11.3. Faraday Rotation -- 11.4. Refraction -- 11.5. Scintillation -- 11.6. Interstellar Electron Density Power Spectrum -- 11.7. Extreme Scattering Events. 12. Interstellar Radiation Fields -- 12.1. Galactic Synchrotron Radiation -- 12.2. Cosmic Microwave Background Radiation -- 12.3. Free-free Emission And Recombination Continuum -- 12.4. Infrared Emission From Dust -- 12.5. Starlight In An Hi Region -- 12.6. X Rays From Hot Plasma -- 12.7. Radiation Field In A Photodissociation Region Near A Hot Star -- 13. Ionization Processes -- 13.1. Photoionization -- 13.2. Auger Ionization And X-ray Fluorescence -- 13.3. Secondary Ionizations -- 13.4. Collisional Ionization -- 13.5. Cosmic Ray Ionization -- 14. Recombination Of Ions With Electrons -- 14.1. Radiative Recombination -- 14.2. Radiative Recombination Of Hydrogen -- 14.3. Radiative Recombination: Helium -- 14.4. Radiative Recombination: Heavy Elements -- 14.5. Dielectronic Recombination -- 14.6. Dissociative Recombination -- 14.7. Charge Exchange -- 14.8. Ion Neutralization By Dust Grains -- 14.9. Ionization Balance In Collisionally Ionized Gas -- 15. Photoionized Gas -- 15.1. H Ii Regions As Stromgren Spheres -- 15.2. Time Scales. 15.3. Neutral Fraction Within An H Ii Region -- 15.4. Dusty H Ii Regions With Radiation Pressure -- 15.5. Ionization Of Helium And Other Elements -- 15.6. Planetary Nebulae -- 15.7. Escape Of Lyman & Alpha; -- 15.8. Ionization By Power-law Spectra -- 16. Ionization In Predominantly Neutral Regions -- 16.1. H I Regions: Ionization Of Metals -- 16.2. Cool H I Regions: Ionization Of Hydrogen -- 16.3. Warm H I Regions -- 16.4. Diffuse Molecular Gas -- 16.5. Dense Molecular Gas: Dark Clouds -- 17. Collisional Excitation -- 17.1. Two-level Atom -- 17.2. Critical Density Nerit, U -- 17.3. Example: Hi Spin Temperature -- 17.4. Example: Cii Fine Structure Excitation -- 17.5. Three-level Atom -- 17.6. Example: Fine Structure Excitation Of Ci And Oi -- 17.7. Measurement Of Density And Pressure Using Ci -- 18. Nebular Diagnostics -- 18.1. Temperature Diagnostics: Collisionally Excited Optical/uv Lines -- 18.2. Density Diagnostics: Collisionally Excited Optical/uv Lines -- 18.3. Density Diagnostics: Fine-structure Emission Lines -- 18.4. Other Diagnostic Methods. 18.5. Abundance Determination From Collisionally Excited Lines -- 18.6. Abundances From Optical Recombination Lines -- 18.7. Ionization/excitation Diagnostics: The Bpt Diagram -- 19. Radiative Trapping -- 19.1. Escape Probability Approximation -- 19.2. Homogeneous Static Spherical Cloud -- 19.3. Example: Co J =i-o -- 19.4. Lvg Approximation: Hubble Flow -- 19.5. Escape Probability For Turbulent Clouds -- 19.6. Co I-o Emission As A Tracer Of H2 Mass: Co X-factor -- 20. Optical Pumping -- 20.1. Uv Pumping By Continuum -- 20.2. Infrared Pumping: Oh -- 20.3. Uv Pumping By Line Coincidence: Bowen Fluorescence -- 21. Interstellar Dust: Observed Properties -- 21.1. Interstellar Extinction -- 21.2. Parametric Fits To The Extinction Curve -- 21.3. Polarization By Interstellar Dust -- 21.4. Scattering Of Starlight By Interstellar Dust -- 21.5. Size Distribution Of Interstellar Dust -- 21.6. Purcell Limit: Lower Limit On Dust Volume -- 21.7. Infrared Emission -- 21.8. Luminescence -- 22. Scattering And Absorption By Small Particles -- 22.1. Cross Sections And Efficiency Factors. 22.2. Dielectric Function And Refractive Index -- 22.3. Electric Dipole Limit: Size <& Lambda; -- 22.4. Limiting Behavior At Long Wavelengths -- 22.5. Sizes Comparable To Wavelength: Mie Theory -- 22.6. Nonspherical Particles -- 22.7. Interstellar Grains -- 23. Composition Of Interstellar Dust -- 23.1. Abundance Constraints -- 23.2. Presolar Grains In Meteorites -- 23.3. Observed Spectral Features Of Dust -- 23.4. Silicates -- 23.5. Polycyclic Aromatic Hydrocarbons -- 23.6. Graphite -- 23.7. Diamond -- 23.8. Amorphous Carbons, Including Hydrogenated Amorphous Carbon -- 23.9. Fullerenes -- 23.10. Models For Interstellar Dust -- 24. Temperatures Of Interstellar Grains -- 24.1. Heating And Cooling Of Classical Dust Grains -- 24.2. Heating And Cooling Of Ultrasmall Dust Grains: Temperature Spikes -- 24.3. Infrared Emission From Grains -- 24.4. Collisionally Heated Dust -- 25. Grain Physics: Charging And Sputtering -- 25.1. Collisional Charging -- 25.2. Photoelectric Emission -- 25.3. Grain Charging In The Diffuse Ism -- 25.4. Secondary Electron Emission. 25.5. Electron Field Emission -- 25.6. Ion Field Emission And Coulomb Explosions -- 25.7. Sputtering In Hot Gas -- 26. Grain Dynamics -- 26.1. Translational Motion -- 26.2. Rotational Motion -- 26.3. Alignment Of Interstellar Dust -- 27. Heating And Cooling Of H Ii Regions -- 27.1. Heating By Photoionization -- 27.2. Other Heating Processes -- 27.3. Cooling Processes -- 27.4. Thermal Equilibrium -- 27.5. Emission Spectrum Of An H Ii Region -- 27.6. Observed Temperatures In H Ii Regions -- 28. The Orion H Ii Region -- 28.1. Trapezium Stars -- 28.2. Distribution Of Ionized Gas -- 28.3. Orion Bar -- 28.4. Gas Kinematics -- 28.5. Pigs, Proplyds, And Shadows -- 29. H I Clouds: Observations -- 29.1. 21-cm Line Observations -- 29.2. Distribution Of The H I -- 29.3. Zeeman Effect -- 29.4. Optical And Uv Absorption Line Studies -- 29.5. Infrared Emission -- 30. H I Clouds: Heating And Cooling -- 30.1. Heating: Starlight, Cosmic Rays, X Rays, And Mhd Waves -- 30.2. Photoelectric Heating By Dust -- 30.3. Cooling: [c Ii] 158 & Mu;m, [oi] 63 & Mu;m, And Other Lines. 30.4. Two Phases For Hi In The Ism -- 30.5. Emission Spectrum Of An Hi Cloud -- 31. Molecular Hydrogen -- 31.1. Gas-phase Formation Of H2 -- 31.2. Grain Catalysis Of H2 -- 31.3. Photodissociation Of H2 -- 31.4. Self-shielding -- 31.5. Excitation Of Vibration And Rotation By Uv Pumping -- 31.6. Rotational Level Populations -- 31.7. Structure Of A Photodissociation Region -- 31.8. Dense Pdrs -- 32. Molecular Clouds: Observations -- 32.1. Taxonomy And Astronomy -- 32.2. Star Counts -- 32.3. Molecular Radio Lines -- 32.4. Fir Emission From Dust -- 32.5. & Gamma; Rays -- 32.6. Compact, Ultracompact, And Hypercompact Hii Regions -- 32.7. Ir Point Sources -- 32.8. Masers -- 32.9. Size-linewidth Relation In Molecular Clouds. Note Continued: 32.10. Magnetic Fields In Molecular Clouds -- 32.11. Energy Dissipation In Molecular Clouds -- 33. Molecular Clouds: Chemistry And Ionization -- 33.1. Photoionization And Photodissociation Of Molecules -- 33.2. Ion-molecule Chemistry In Cold Gas -- 33.3. The Ch+ Problem -- 34. Physical Processes In Hot Gas -- 34.1. Radiative Cooling -- 34.2. Radiative Cooling Time -- 34.3. Thermal Conduction -- 34.4. Cloud Evaporation In Hot Gas -- 34.5. Conduction Fronts -- 35. Fluid Dynamics -- 35.1. Mass Conservation -- 35.2. Conservation Of Momentum: Mhd Navier-stokes Equation -- 35.3. Heating And Cooling -- 35.4. Electrodynamics In A Conducting Fluid: Flux-freezing -- 35.5. Virial Theorem -- 36. Shock Waves -- 36.1. Sources Of Interstellar Shocks -- 36.2. Jump Conditions: Rankine-hugoniot Relations -- 36.3. Cooling Time And Cooling Length -- 36.4. Collisionless Shocks. 36.5. Electron Temperature -- 36.6. Two-fluid Mhd Shocks In Low Fractional Ionization Gas -- 37. Ionization/dissociation Fronts -- 37.1. Ionization Fronts: R-type And D-type -- 37.2. Expansion Of An Hii Region In A Uniform Medium -- 37.3. Photodissociation Fronts -- 38. Stellar Winds -- 38.1. Winds From Hot Stars: Stellar Wind Bubbles -- 38.2. Winds From Cool Stars -- 38.3. Stellar Wind Bow-shock -- 39. Effects Of Supernovae On The Ism -- 39.1. Evolution Of A Supernova Remnant In A Uniform Ism -- 39.2. Overlapping Of Snrs -- 39.3. Supernova Remnants In An Inhomogeneous Medium -- 39.4. Three-phase Model Of The Ism -- 40. Cosmic Rays And Gamma Rays -- 40.1. Cosmic Ray Energy Spectrum And Composition -- 40.2. Theory Of Diffusive Shock Acceleration -- 40.3. Injection Problem -- 40.4. Upper Limits On Cosmic Ray Energy -- 40.5. Cosmic Ray Propagation -- 40.6. Synchrotron Emission And Supernova Remnants -- 40.7. Gamma Ray Emission From Interstellar Clouds. 40.8. 26 Al In The Ism -- 40.9. Positrons And Positronium In The Ism -- 41. Gravitational Collapse And Star Formation: Theory -- 41.1. Gravitational Instability: Jeans Instability -- 41.2. Parker Instability -- 41.3. Insights From The Virial Theorem -- 41.4. Magnetic Flux Problem: Ambipolar Diffusion -- 41.5. Angular Momentum Problem -- 41.6. Accretion Disks -- 41.7. Radiation Pressure -- 42. Star Formation: Observations -- 42.1. Collapse Of Cores To Form Stars -- 42.2. Class 0, I, Ii, And Iii Protostars -- 42.3. Initial Mass Function -- 42.4. Star Formation Rates -- 42.5. Schrnidt-kennicutt Law -- Appendices -- A. List Of Symbols -- B. Physical Constants -- C. Summary Of Radiative Processes -- D. Ionization Potentials (ev) -- E. Energy-level Diagrams -- F. Collisional Rate Coefficients -- G. Semiclassical Atom -- H. Debye Length For A Plasma -- I. Heuristic Model For Ion-electron Inelastic Scattering -- J. Virial Theorem. Bruce T. Draine. Includes Bibliographical References And Index.
备用描述
Content: Machine generated contents note: 1. Introduction --
1.1. Organization of the ISM: Characteristic Phases --
1.2. Elemental Composition --
1.3. Energy Densities --
2. Collisional Processes --
2.1. Collisional Rate Coefficients --
2.2. Inverse-Square Law Forces: Elastic Scattering --
2.3. Electron-Ion Inelastic Scattering: Collision Strength & omega;ul --
2.4. Ion-Neutral Collision Rates --
2.5. Electron-Neutral Collision Rates --
2.6. Neutral-Neutral Collision Rates --
3. Statistical Mechanics and Thermodynamic Equilibrium --
3.1. Partition Functions --
3.2. Detailed Balance: The Law of Mass Action --
3.3. Ionization and Recombination --
3.4. Saha Equation --
3.5. Detailed Balance: Ratios of Rate Coefficients --
3.6. Detailed Balance: Ratios of Cross Sections --
3.7. Example: Three-Body Recombination --
3.8. Departure Coefficients --
4. Energy Levels of Atoms and Ions --
4.1. Single-Electron Orbitals --
4.2. Configurations --
4.3. Spectroscopic Terms --
4.4. Fine Structure: Spin-Orbit Interaction. 4.5. Designation of Energy Levels for Atoms and Ions: Spectroscopic Notation --
4.6. Hyperfine Structure: Interaction with Nuclear Spin --
4.7. Zeeman Effect --
4.8. Further Reading --
5. Energy Levels of Molecules --
5.1. Diatomic Molecules --
5.2. Energy Levels of Nonlinear Molecules --
5.3. Zeeman Splitting --
5.4. Further Reading --
6. Spontaneous Emission, Stimulated Emission, and Absorption --
6.1. Emission and Absorption of Photons --
6.2. Absorption Cross Section --
6.3. Oscillator Strength --
6.4. Intrinsic Line Profile --
6.5. Doppler Broadening: The Voigt Line Profile --
6.6. Transition from Doppler Core to Damping Wings --
6.7. Selection Rules for Radiative Transitions --
7. Radiative Transfer --
7.1. Physical Quantities --
7.2. Equation of Radiative Transfer --
7.3. Emission and Absorption Coefficients --
7.4. Integration of the Equation of Radiative Transfer --
7.5. Maser Lines --
8. HI 21-cm Emission and Absorption --
8.1. HI Emissivity and Absorption Coefficient --
8.2. Optically Thin Cloud --
8.3. Spin Temperature Determination Using Background Radio Sources. 9. Absorption Lines: The Curve of Growth --
9.1. Absorption Lines --
9.2. Optically Thin Absorption, & tau;0 <1 --
9.3. Flat Portion of the Curve of Growth, 10 <& tau;0 & tau;damp --
9.5. Approximation Formulae for W --
9.6. Doublet Ratio --
9.7. Lyman Series of Hydrogen: Ly & alpha;, Ly & beta;, Ly & gamma; --
9.8. Lyman Limit --
9.9. H2: Lyman and Werner Bands --
9.10. ''Metal'' Lines --
9.11. Abundances in HI Gas --
10. Emission and Absorption by a Thermal Plasma --
10.1. Free-Free Emission (Bremsstrahlung) --
10.2. Gaunt Factor --
10.3. Frequency-Averaged Gaunt Factor --
10.4. Free-Free Absorption --
10.5. Emission Measure --
10.6. Free-Bound Transitions: Recombination Continuum --
10.7. Radio Recombination Lines --
11. Propagation of Radio Waves through the ISM --
11.1. Dispersion Relation for Cold Plasmas --
11.2. Dispersion --
11.3. Faraday Rotation --
11.4. Refraction --
11.5. Scintillation --
11.6. Interstellar Electron Density Power Spectrum --
11.7. Extreme Scattering Events. 12. Interstellar Radiation Fields --
12.1. Galactic Synchrotron Radiation --
12.2. Cosmic Microwave Background Radiation --
12.3. Free-Free Emission and Recombination Continuum --
12.4. Infrared Emission from Dust --
12.5. Starlight in an HI Region --
12.6. X Rays from Hot Plasma --
12.7. Radiation Field in a Photodissociation Region near a Hot Star --
13. Ionization Processes --
13.1. Photoionization --
13.2. Auger Ionization and X-Ray Fluorescence --
13.3. Secondary Ionizations --
13.4. Collisional Ionization --
13.5. Cosmic Ray Ionization --
14. Recombination of Ions with Electrons --
14.1. Radiative Recombination --
14.2. Radiative Recombination of Hydrogen --
14.3. Radiative Recombination: Helium --
14.4. Radiative Recombination: Heavy Elements --
14.5. Dielectronic Recombination --
14.6. Dissociative Recombination --
14.7. Charge Exchange --
14.8. Ion Neutralization by Dust Grains --
14.9. Ionization Balance in Collisionally Ionized Gas --
15. Photoionized Gas --
15.1. H II Regions as Stromgren Spheres --
15.2. Time Scales. 15.3. Neutral Fraction within an H II Region --
15.4. Dusty H II Regions with Radiation Pressure --
15.5. Ionization of Helium and Other Elements --
15.6. Planetary Nebulae --
15.7. Escape of Lyman & alpha; --
15.8. Ionization by Power-Law Spectra --
16. Ionization in Predominantly Neutral Regions --
16.1. H I Regions: Ionization of Metals --
16.2. Cool H I Regions: Ionization of Hydrogen --
16.3. Warm H I Regions --
16.4. Diffuse Molecular Gas --
16.5. Dense Molecular Gas: Dark Clouds --
17. Collisional Excitation --
17.1. Two-Level Atom --
17.2. Critical Density nerit, u --
17.3. Example: HI Spin Temperature --
17.4. Example: CII Fine Structure Excitation --
17.5. Three-Level Atom --
17.6. Example: Fine Structure Excitation of CI and OI --
17.7. Measurement of Density and Pressure Using CI --
18. Nebular Diagnostics --
18.1. Temperature Diagnostics: Collisionally Excited Optical/UV Lines --
18.2. Density Diagnostics: Collisionally Excited Optical/UV Lines --
18.3. Density Diagnostics: Fine-Structure Emission Lines --
18.4. Other Diagnostic Methods. 18.5. Abundance Determination from Collisionally Excited Lines --
18.6. Abundances from Optical Recombination Lines --
18.7. Ionization/Excitation Diagnostics: The BPT Diagram --
19. Radiative Trapping --
19.1. Escape Probability Approximation --
19.2. Homogeneous Static Spherical Cloud --
19.3. Example: CO J =I-O --
19.4. LVG Approximation: Hubble Flow --
19.5. Escape Probability for Turbulent Clouds --
19.6. CO I-O Emission as a Tracer of H2 Mass: CO ''X-Factor'' --
20. Optical Pumping --
20.1. UV Pumping by Continuum --
20.2. Infrared Pumping: OH --
20.3. UV Pumping by Line Coincidence: Bowen Fluorescence --
21. Interstellar Dust: Observed Properties --
21.1. Interstellar Extinction --
21.2. Parametric Fits to the Extinction Curve --
21.3. Polarization by Interstellar Dust --
21.4. Scattering of Starlight by Interstellar Dust --
21.5. Size Distribution of Interstellar Dust --
21.6. Purcell Limit: Lower Limit on Dust Volume --
21.7. Infrared Emission --
21.8. Luminescence --
22. Scattering and Absorption by Small Particles --
22.1. Cross Sections and Efficiency Factors. 22.2. Dielectric Function and Refractive Index --
22.3. Electric Dipole Limit: Size <& lambda; --
22.4. Limiting Behavior at Long Wavelengths --
22.5. Sizes Comparable to Wavelength: Mie Theory --
22.6. Nonspherical Particles --
22.7. Interstellar Grains --
23. Composition of Interstellar Dust --
23.1. Abundance Constraints --
23.2. Presolar Grains in Meteorites --
23.3. Observed Spectral Features of Dust --
23.4. Silicates --
23.5. Polycyclic Aromatic Hydrocarbons --
23.6. Graphite --
23.7. Diamond --
23.8. Amorphous Carbons, Including Hydrogenated Amorphous Carbon --
23.9. Fullerenes --
23.10. Models for Interstellar Dust --
24. Temperatures of Interstellar Grains --
24.1. Heating and Cooling of ''Classical'' Dust Grains --
24.2. Heating and Cooling of Ultrasmall Dust Grains: Temperature Spikes --
24.3. Infrared Emission from Grains --
24.4. Collisionally Heated Dust --
25. Grain Physics: Charging and Sputtering --
25.1. Collisional Charging --
25.2. Photoelectric Emission --
25.3. Grain Charging in the Diffuse ISM --
25.4. Secondary Electron Emission. 25.5. Electron Field Emission --
25.6. Ion Field Emission and Coulomb Explosions --
25.7. Sputtering in Hot Gas --
26. Grain Dynamics --
26.1. Translational Motion --
26.2. Rotational Motion --
26.3. Alignment of Interstellar Dust --
27. Heating and Cooling of H II Regions --
27.1. Heating by Photoionization --
27.2. Other Heating Processes --
27.3. Cooling Processes --
27.4. Thermal Equilibrium --
27.5. Emission Spectrum of an H II Region --
27.6. Observed Temperatures in H II Regions --
28. The Orion H II Region --
28.1. Trapezium Stars --
28.2. Distribution of Ionized Gas --
28.3. Orion Bar --
28.4. Gas Kinematics --
28.5. PIGS, Proplyds, and Shadows --
29. H I Clouds: Observations --
29.1. 21-cm Line Observations --
29.2. Distribution of the H I --
29.3. Zeeman Effect --
29.4. Optical and UV Absorption Line Studies --
29.5. Infrared Emission --
30. H I Clouds: Heating and Cooling --
30.1. Heating: Starlight, Cosmic Rays, X Rays, and MHD Waves --
30.2. Photoelectric Heating by Dust --
30.3. Cooling: [C II] 158 & mu;m, [OI] 63 & mu;m, and Other Lines. 30.4. Two ''Phases'' for HI in the ISM --
30.5. Emission Spectrum of an HI Cloud --
31. Molecular Hydrogen --
31.1. Gas-Phase Formation of H2 --
31.2. Grain Catalysis of H2 --
31.3. Photodissociation of H2 --
31.4. Self-Shielding --
31.5. Excitation of Vibration and Rotation by UV Pumping --
31.6. Rotational Level Populations --
31.7. Structure of a Photodissociation Region --
31.8. Dense PDRs --
32. Molecular Clouds: Observations --
32.1. Taxonomy and Astronomy --
32.2. Star Counts --
32.3. Molecular Radio Lines --
32.4. FIR Emission from Dust --
32.5. & gamma; rays --
32.6. Compact, Ultracompact, and Hypercompact HII Regions --
32.7. IR Point Sources --
32.8. Masers --
32.9. Size-Linewidth Relation in Molecular Clouds. Note continued: 32.10. Magnetic Fields in Molecular Clouds --
32.11. Energy Dissipation in Molecular Clouds --
33. Molecular Clouds: Chemistry and Ionization --
33.1. Photoionization and Photodissociation of Molecules --
33.2. Ion-Molecule Chemistry in Cold Gas --
33.3. The CH+ Problem --
34. Physical Processes in Hot Gas --
34.1. Radiative Cooling --
34.2. Radiative Cooling Time --
34.3. Thermal Conduction --
34.4. Cloud Evaporation in Hot Gas --
34.5. Conduction Fronts --
35. Fluid Dynamics --
35.1. Mass Conservation --
35.2. Conservation of Momentum: MHD Navier-Stokes Equation --
35.3. Heating and Cooling --
35.4. Electrodynamics in a Conducting Fluid: Flux-Freezing --
35.5. Virial Theorem --
36. Shock Waves --
36.1. Sources of Interstellar Shocks --
36.2. Jump Conditions: Rankine-Hugoniot Relations --
36.3. Cooling Time and Cooling Length --
36.4. Collisionless Shocks. 36.5. Electron Temperature --
36.6. Two-Fluid MHD Shocks in Low Fractional Ionization Gas --
37. Ionization/Dissociation Fronts --
37.1. Ionization Fronts: R-Type and D-Type --
37.2. Expansion of an HII Region in a Uniform Medium --
37.3. Photodissociation Fronts --
38. Stellar Winds --
38.1. Winds from Hot Stars: Stellar Wind Bubbles --
38.2. Winds from Cool Stars --
38.3. Stellar Wind Bow-Shock --
39. Effects of Supernovae on the ISM --
39.1. Evolution of a Supernova Remnant in a Uniform ISM --
39.2. Overlapping of SNRs --
39.3. Supernova Remnants in an Inhomogeneous Medium --
39.4. Three-Phase Model of the ISM --
40. Cosmic Rays and Gamma Rays --
40.1. Cosmic Ray Energy Spectrum and Composition --
40.2. Theory of Diffusive Shock Acceleration --
40.3. Injection Problem --
40.4. Upper Limits on Cosmic Ray Energy --
40.5. Cosmic Ray Propagation --
40.6. Synchrotron Emission and Supernova Remnants --
40.7. Gamma Ray Emission from Interstellar Clouds. 40.8. 26 Al in the ISM --
40.9. Positrons and Positronium in the ISM --
41. Gravitational Collapse and Star Formation: Theory --
41.1. Gravitational Instability: Jeans Instability --
41.2. Parker Instability --
41.3. Insights from the Virial Theorem --
41.4. Magnetic Flux Problem: Ambipolar Diffusion --
41.5. Angular Momentum Problem --
41.6. Accretion Disks --
41.7. Radiation Pressure --
42. Star Formation: Observations --
42.1. Collapse of Cores to form Stars --
42.2. Class 0, I, II, and III Protostars --
42.3. Initial Mass Function --
42.4. Star Formation Rates --
42.5. Schrnidt-Kennicutt Law --
Appendices --
A. List of Symbols --
B. Physical Constants --
C. Summary of Radiative Processes --
D. Ionization Potentials (eV) --
E. Energy-Level Diagrams --
F. Collisional Rate Coefficients --
G. Semiclassical Atom --
H. Debye Length for a Plasma --
I. Heuristic Model for Ion-Electron Inelastic Scattering --
J. Virial Theorem.
备用描述
"This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium -- the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium ..."--Provided by publisher
开源日期
2014-11-04
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。