Emerging Carbyne : Truly One-Dimensional Form of Carbon 🔍
Yahachi Saito (editor) Jenny Stanford Publishing, CRC Press (Unlimited), [S.l.], 2024
英语 [en] · PDF · 68.3MB · 2024 · 📘 非小说类图书 · 🚀/lgli/lgrs/upload · Save
描述
Molecular carbon chains have attracted much interest for more than 130 years, but the length of chains is limited to 44 atoms even by sophisticated chemical synthesis. Recently, the artificial synthesis of long linear carbon chains, “carbynes,” has revived, and their existence was firmly substantiated using the latest advanced analytical methods, such as high-resolution electron microscopy and Raman scattering spectroscopy. Until the 1980s, graphite and diamond were the well-known allotropic forms of elemental carbon, which were two-dimensional (2D) and 3D crystals, respectively. Carbyne is the ultimate 1D nanowire with atomic diameter and its synthesis has opened prospects for versatile properties of carbon materials. Carbyne is a 1D semiconductor with a direct transition energy gap and interesting properties such as extreme mechanical strength are expected from it. This book comprehensively reviews and describes the latest chemical and physical synthesis methods, theoretically predicted properties, and possible applications of carbyne. This book comprehensively reviews and describes the recent development of chemical and physical synthesis methods, theoretically predicted properties, and possible applications of carbyne.
Cover 1
Half Title 2
Title Page 4
Copyright Page 5
Table of Contents 6
Preface 12
Chapter 1: Historical Survey of “Carbyne” Research Leading to This Book 14
1.1: Introduction 14
1.2: Versatile Allotropes of Carbon 15
1.3: Carbyne in Nature 16
1.4: Chemical Synthesis 17
1.5: Physical Synthesis 18
1.6: Physicochemical Synthesis 19
1.7: Expected Physical Properties 20
Chapter 2: Formation and Characterization of Polyynes in Liquid and Solid Media 24
2.1: Introduction 25
2.2: Formation and Characterization of Polyynes 28
2.2.1: Laser Ablation of Graphite Particles in Organic Solvents 28
2.2.2: High Performance Liquid Chromatography (HPLC) for Separation and Purification 29
2.3: Optical Properties of Polyynes 32
2.3.1: Electronic States of Polyyne Molecules 32
2.3.2: UV Absorption Spectra 34
2.3.3: Raman Spectra 36
2.3.4: IR Absorption Spectra 38
2.3.5: Fluorescence Spectra 40
2.3.6: Phosphorescence Spectra 42
2.3.7: Photoinduced Formation of a Polyyne-Iodine Complex 44
2.4: Polyynes in Solid Media 45
2.4.1: Polyynes in Carbon Nanotubes 45
2.4.2: Crystalline Forms of Polyyne-Cyclodextrin Inclusion Compounds 47
2.4.3: Aligned Polyyne Molecules in PVA Films as UV Polarizer 49
2.4.4: Linear Dichroism 53
2.4.5: Angular Dependence of Transmittance and Absorbance for Linearly Polarized Light 56
2.5: Solid Aggregates of Polyynes 60
Chapter 3: Growth of Polyynes by Laser Ablation in Solution 68
3.1: Introduction 68
3.2: Physical Synthesis Methods: An Overview 71
3.3: Physical Processes in Pulsed Laser Ablation in Liquid 73
3.4: Synthesis of Nanomaterial by Pulsed Laser Ablation in Liquid 77
3.5: Formation Mechanisms of Carbon Atomic Wires by PLAL 82
3.6: How to Characterize Carbon Atomic Wires’ Mixtures Produced by PLAL 84
3.6.1: UV-Vis Absorption Spectroscopy 84
3.6.2: High-Performance Liquid Chromatography 86
3.6.3: Raman Spectroscopy 88
3.6.4: Surface-Enhanced Raman Spectroscopy 89
3.6.5: Resonance Raman Spectroscopy 91
3.7: Understanding the Importance of PLAL Parameters for Carbon Atomic Wires Fabrication 92
3.7.1: The Role of the Laser Wavelength and Fluence 92
3.7.2: The Impact of the Pulse Duration: ns-PLAL vs fs-PLAL 96
3.7.3: The Effect of Setup Geometries 97
3.8: Solvent Role 101
3.8.1: Water 106
3.8.2: Colloidal Solutions 106
3.8.3: Organic Solvents 107
3.8.4: Gaseous Environments 110
3.8.5: Summary 110
3.9: Target Role 111
3.9.1: Solid Targets 117
3.9.2: Powder Targets 117
3.9.3: Direct Ablation of the Solvent 118
3.9.4: Gaseous Environments 118
3.9.5: Metal Targets 119
3.10: Encapsulation of Polyynes by PLAL as a Route to Stabilization 119
3.10.1: Polymeric Matrices 120
3.10.2: Nanotubes 122
3.11: Conclusions 123
Chapter 4: Discovery of Carbon Nanowires and Mass Production of Single-Walled Carbon Nanowires by Polyyne Fusion 146
4.1: Introduction 147
4.1.1: Discovery of Carbon Nanowires (CNWs) 147
4.1.2: Impact on Carbyne Research of CNWs Discovery 150
4.1.3: Classification of CNWs and Preparation Methods 151
4.1.4: Research Progress of CNWs 152
4.1.5: The Content of This Chapter 154
4.2: Preparation of Polyyne Molecules, C2nH2, by Submerged Arc-Discharge in Organic Solvents, Their Purification and Storage 155
4.2.1: Preparation Methods of Polyyne Molecules, C2nH2, by Submerged Arc-Discharge 155
4.2.2: Purification and Concentration of Polyyne Solution via Carbides 157
4.2.3: Long-Term Storage of Polyyne Molecules, C2nH2, in Paraffin 159
4.3: Preparation of SWCNWs by Fusion Reaction of Polyyne Molecules inside SWCNTs 162
4.3.1: Synthesis of SWCNWs (LLCCs@SWCNTs) 162
4.3.1.1: A controlled approach for mass producing SWCNWs: polyynes fusion method 163
4.3.1.2: Removal of end-caps of ultrathin SWCNTs 164
4.3.1.3: Fusion reaction of polyyne molecules inside SWCNTs 165
4.3.2: Mechanism of Polyynes Fusion Method for Preparing SWCNWs 167
4.4: Characterization of SWCNWs 168
4.4.1: Raman Spectra Measurements of SWCNWs 168
4.4.2: HRTEM Observations of SWCNWs 171
4.5: Effect of Temperature on Raman Spectra of SWCNWs 175
4.6: Challenges and Prospects of SWCNWs 181
4.7: Conclusions 181
Chapter 5: Synthesis of Long Linear Carbon Chains Confined in Multi-Walled Carbon Nanotubes 192
5.1: Introduction to the Discovery of MWCNWs 193
5.2: The Preparation of MWCNWs via Arc-Discharge Method 197
5.2.1: The Apparatus and Conditions of Arc-Discharge Method to Prepare MWCNWs 197
5.2.2: The Characterization of MWCNWs Obtained via Arc-Discharge Method 202
5.2.2.1: HRTEM observations on MWCNWs 202
5.2.2.2: Raman spectroscopic studies on MWCNWs 205
5.3: The Mechanism of MWCNW Growth in Arc-Discharge Process 209
5.4: The Challenges and Prospects of MWCNWs and Arc-Discharge Method 219
Chapter 6: Atomistic Simulations of Formation Processes of Carbon Nanowires 224
6.1: Introduction 225
6.2: Properties of CNWs 231
6.3: Insertion Process of CNW Formation 232
6.4: Fusion Process of CNW Formation 234
6.5: Configurations of Carbon Chains with Hydrogen Adatoms 239
6.6: Diameter Effects on the Binding Energies of Carbon Nanowires 249
6.7: Summaries and Perspectives 252
Chapter 7: Synthesis of Confined Carbyne inside Carbon Nanotubes by Thermal Annealing 260
7.1: Introduction 261
7.2: Formation of Linear Carbon Chains by Thermal Annealing of DWCNTs 261
7.3: Tailored Growth of Confined Carbyne by Thermal Annealing of SWCNTs 270
7.4: The Role of CNTs in the Formation of LCCs 279
Chapter 8: Linear Carbon Chains Formed by Electric Discharge of Carbon Nanotube Cathode 286
8.1: Introduction 287
8.2: Field Emission and Discharge of CNT Film Cathode 288
8.3: Raman Spectroscopy of SWCNT Film After Discharge 289
8.4: Transmission Electron Microscopy of LCC inside CNT 296
8.5: Features of LCC@CNT Formed by Discharge Method 298
8.6: Hypothetical Formation Mechanism of LCC@CNT 299
8.7: Summary and Perspectives 300
Chapter 9: Structural and Electrical Characterization of Atomic Carbon Chains in the Electron Microscope 304
9.1: Introduction 305
9.1.1: The Structure and Properties of Individual Carbon Chains 305
9.1.2: The Characterization of Individual Carbon Chains 308
9.2: Imaging the Structure of Carbon Chains by Electron Microscopy 310
9.3: Measuring the Electrical Properties of Carbon Chains 312
9.4: Future Experimental Challenges and Outlook 315
Chapter 10: Carbon Chain Stripped from Graphene and Carbon Nanotube 320
10.1: Introduction 321
10.2: Carbon Chains Produced from Graphene 322
10.3: Carbon Chains Produced from Carbon Nanotube 325
10.4: Experimental Measurement of Electrical and Mechanical Characteristics of a Carbon Chain 327
10.5: Conclusions 329
Chapter 11: Superconductivity of One-Dimensional Carbon 334
11.1: Superconductivity in 1D System 335
11.2: One-Dimensional Carbon Materials 336
11.3: Scale Factor Approach for 1D Superconductivity of Carbon (CNT, Carbyne) 337
11.3.1: Carbon Nanotube 342
11.3.2: Monoatomic Carbon Chain 344
11.4: Toward Phonon-Mediated High-Temperature Superconductivity in Carbon Chains 346
11.5: Conclusion 360
Index 364
Nanomaterials;,Physical,Chemistry
Nanomaterials,Physical Chemistry
备用文件名
lgli/9781003510369_webpdf.pdf
备用文件名
lgrsnf/9781003510369_webpdf.pdf
备选作者
Yahachi Saitō
备用出版商
Taylor & Francis Ltd
备用版本
United Kingdom and Ireland, United Kingdom
元数据中的注释
producers:
Adobe PDF Library 10.0.1
开源日期
2024-09-16
更多信息……
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。