Automatic Speech Recognition: A Deep Learning Approach (Signals and Communication Technology) 🔍
Dong Yu, Li Deng (auth.) Springer-Verlag London, Signals and Communication Technology, Signals and Communication Technology, 1, 2015
英语 [en] · PDF · 7.9MB · 2015 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/scihub/upload/zlib · Save
描述
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.
备用文件名
lgli/G:\!genesis\_add\!woodhead\Springer\bok%3A978-1-4471-5779-3.pdf
备用文件名
lgrsnf/G:\!genesis\_add\!woodhead\Springer\bok%3A978-1-4471-5779-3.pdf
备用文件名
nexusstc/Automatic Speech Recognition: A Deep Learning Approach/de2f936b2c7242f06b98cdd7ab823f50.pdf
备用文件名
scihub/10.1007/978-1-4471-5779-3.pdf
备用文件名
zlib/Computers/Artificial Intelligence (AI)/Dong Yu, Li Deng/Automatic Speech Recognition: A Deep Learning Approach_2485780.pdf
备选标题
Automatic Speech Recognition: A Discriminative and Hierarchical Modeling Approach
备选作者
Adobe Acrobat Pro 9.1.0
备选作者
Yu, Dong, Deng, Li
备用出版商
Springer London : Imprint : Springer
备用出版商
Springer London Ltd
备用版本
Signals and communication technology, Aufl. 2015, London, 2015
备用版本
Signals and communication technology, London, 2014
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
2015, 2014-11-28
备用版本
2015, PS, 2014
备用版本
2015, PT, 2014
元数据中的注释
sm33468274
元数据中的注释
producers:
Acrobat Distiller 10.0.0 (Windows)
元数据中的注释
{"container_title":"Signals and Communication Technology","edition":"1","isbns":["1447157788","1447157796","9781447157786","9781447157793"],"issns":["1860-4862","1860-4870"],"last_page":328,"publisher":"Springer London","series":"Signals and Communication Technology"}
备用描述
Front Matter....Pages i-xxvi
Introduction....Pages 1-9
Front Matter....Pages 11-11
Gaussian Mixture Models....Pages 13-21
Hidden Markov Models and the Variants....Pages 23-54
Front Matter....Pages 55-55
Deep Neural Networks....Pages 57-77
Advanced Model Initialization Techniques....Pages 79-95
Front Matter....Pages 97-97
Deep Neural Network-Hidden Markov Model Hybrid Systems....Pages 99-116
Training and Decoding Speedup....Pages 117-136
Deep Neural Network Sequence-Discriminative Training....Pages 137-153
Front Matter....Pages 155-155
Feature Representation Learning in Deep Neural Networks....Pages 157-175
Fuse Deep Neural Network and Gaussian Mixture Model Systems....Pages 177-191
Adaptation of Deep Neural Networks....Pages 193-215
Front Matter....Pages 217-217
Representation Sharing and Transfer in Deep Neural Networks....Pages 219-235
Recurrent Neural Networks and Related Models....Pages 237-266
Computational Network....Pages 267-298
Summary and Future Directions....Pages 299-315
Back Matter....Pages 317-321
备用描述
This book summarizes the recent advancement in the field of automatic speech recognition with a focus on discriminative and hierarchical models. This will be the first automatic speech recognition book to include a comprehensive coverage of recent developments such as conditional random field and deep learning techniques. It presents insights and theoretical foundation of a series of recent models such as conditional random field, semi-Markov and hidden conditional random field, deep neural network, deep belief network, and deep stacking models for sequential learning. It also discusses practical considerations of using these models in both acoustic and language modeling for continuous speech recognition
备用描述
This book reviews past and present work on discriminative and hierarchical models for both acoustic and language modeling. It also analyzes the research direction and trends towards establishing future-generation speech recognition
备用描述
Signals and Communication Technology
Erscheinungsdatum: 28.11.2014
开源日期
2015-02-17
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。