In-Memory Computing Hardware Accelerators for Data-Intensive Applications 🔍
Baker Mohammad (editor), Yasmin Halawani (editor)
Springer International Publishing, 1st ed. 2024, 2023
英语 [en] · PDF · 7.2MB · 2023 · 📘 非小说类图书 · 🚀/lgli/lgrs/upload/zlib · Save
描述
This book describes the state-of-the-art of technology and research on In-Memory Computing Hardware Accelerators for Data-Intensive Applications. The authors discuss how processing-centric computing has become insufficient to meet target requirements and how Memory-centric computing may be better suited for the needs of current applications. This reveals for readers how current and emerging memory technologies are causing a shift in the computing paradigm. The authors do deep-dive discussions on volatile and non-volatile memory technologies, covering their basic memory cell structures, operations, different computational memory designs and the challenges associated with them. Specific case studies and potential applications are provided along with their current status and commercial availability in the market.
备用文件名
lgli/Baker Mohammad-Yasmin Halawani (eds) In-Memory Computing Hardware Accelerators for Data-Intensive Applications (Springer 2024).pdf
备用文件名
lgrsnf/Baker Mohammad-Yasmin Halawani (eds) In-Memory Computing Hardware Accelerators for Data-Intensive Applications (Springer 2024).pdf
备用文件名
zlib/Computers/Hardware/Baker Mohammad, Yasmin Halawani/In-Memory Computing Hardware Accelerators for Data-Intensive Applications_26262024.pdf
备选作者
Mohammad, Baker; Halawani, Yasmin
备用出版商
Springer Nature Switzerland AG
备用版本
Springer Nature, Cham, 2023
备用版本
Switzerland, Switzerland
元数据中的注释
producers:
Acrobat DC
Acrobat DC
备用描述
Preface 5
Contents 7
Data-Centric Computing Paradigm Shift, and Domain-Specific Architecture and Hardware 8
1 Introduction 8
2 Data Centric, Computing Paradigm Shifts, Domain-Specific Designs 9
2.1 Latency 9
2.2 Security, and Privacy 10
2.3 Domain-Specific Architecture and Circuits 10
2.4 Low Quality Data 13
SRAM-Based In-Memory Computing: Circuits, Functions, and Applications 14
1 Introduction 14
2 Standard Memory Cell Design in SRAM 16
3 SRAM IMC/NMC Architectures and Designs 17
4 SRAM-IMC Based Search and Logic Operation 18
4.1 Search Operation 18
4.2 Boolean Logic AND, OR, NAND, NOR, XNOR, XOR, and IMC 23
5 Arithmetic Operations 27
5.1 Addition 27
5.2 Multiplication 29
5.3 SRAM Based Multiply-Accumulate Arithmetic Implementations 31
6 Potential Applications 34
6.1 CNNs Applications 35
6.2 Encryption Algorithms Application 36
6.3 Application for Machine Learning (ML) and Classification Algorithms 37
6.4 SRAM-IMC for CAM and Hamming Distance Computation 37
Proposed SRAM-IMC for Hamming Distance Computation 39
7 Challenges 39
7.1 Readout Precision vs. Signal Margin 40
7.2 Limitations of 6T SRAM 40
7.3 Process Variation 40
7.4 Read Disturb 42
7.5 Cell and Array Area 42
7.6 Multi-Bit Input Schemes for MAC Operations 42
8 Commercial Availability 43
In and Near-Memory Computing Using DRAM 45
1 Introduction 45
2 DRAM Organization 46
3 DRAM Access 48
4 DRAM Computing Architecture 50
4.1 Row Copy 51
4.2 Bulk Initialization 52
4.3 Bitwise Operation 53
5 Potential Applications 55
5.1 Accelerators for Machine Learning Using DRAM 55
5.2 IMC Using DRAM for Security Applications 57
True Random Number Generator (TRNG) 57
Physical Unclonable Function (PUF) 58
6 Challenges 61
7 Commercial Availability 61
MRAM-Based In-Memory Computing 62
1 Introduction 62
1.1 Chapter Organization 63
2 Overview 63
2.1 CMOS Integration 64
2.2 Basic Characteristics and Comparisons to Other Technologies 66
Speed 66
Power 66
Density 66
Data Retention and Endurance 66
3 Physics of Magnetic Tunnel Junctions 67
3.1 Critical Current Density 67
3.2 Dynamic Modeling 68
3.3 TMR 69
4 Chip Demonstrations and Commercialization 69
5 MRAM for In-Memory Computing 71
5.1 Possibilities and Challenges 72
5.2 Digital IMC 73
General-Purpose IMC 73
IMC for AI Applications 75
5.3 Analog IMC 76
STT-MRAM Crossbar Architectures 76
Neuromorphic MRAM-Based Systems 77
6 Case Study: A Mixed-Signal SNN Accelerator Using an STT Crossbar 78
6.1 2MTJ-2T Cell 80
6.2 Mapping SNN to the STT Crossbar 82
Noise Modeling 83
In-Memory Computing Using Phase Change Memory 85
1 Introduction 85
2 Operating Principle 86
2.1 Write Operation 86
2.2 Read Operation 86
2.3 Multi-Level Operation 87
3 Properties of PCM Devices 88
4 Potential Applications 89
4.1 Compressed Sensing and Recovery 89
4.2 Mixed-Precision IMC 91
4.3 Convolutional Neural Network (CNN) Inference 92
4.4 Spiking Neural Network (SNN) with PCM Synapses 93
4.5 Hyper-Dimensional Computing (HDC) 93
4.6 Similarity Search in Genomic Read Mapping 94
4.7 Case Study: PCM-Based IMC Array with Time-Domain Circuit for DNA Read Mapping 95
5 Challenges 97
6 Commercial Availability 99
Memristor-Based In-Memory Computing 101
1 Introduction 101
2 Operating Principles 102
2.1 Memristor Basics 102
2.2 Memristor Models 103
2.3 Memristor Crossbar 104
3 RRAM IMC Architecture and Designs 105
3.1 RRAM-Based Vector-Matrix Multiplication 105
3.2 RRAM-Based In-Memory Logic 107
3.3 RRAM-Based Neural Network Architectures 108
3.4 RRAM-Based Spiking Neural Network Architectures 109
3.5 RRAM-Based Hyperdimensional Computing 110
3.6 RRAM-Based Image Processing 110
3.7 RRAM-Based Image Compression 111
3.8 RRAM-Based Image Enhancement 111
4 Challenges 112
4.1 Device Level 112
Conductance Tuning Scheme 112
State Disturbance 113
Resistance Ratio 113
Symmetry of the Device 113
Crossbar Nanowire Resistance 113
4.2 Peripheral Circuit Level 114
Sneak Path Currents 114
Write/Access Latency 114
Optimizing Peripheral Circuitry 114
RESET Operation Before Every Write 115
4.3 System Level 115
Map Matrix Values to Memristor Conductance 115
Negative Value Representation Using Memristor Conductance 116
Mapping Algorithms and Hardware Training Schemes 117
5 Case Study: Transformer Attention Acceleration on Memristor 117
5.1 Performance Assessment and Discussion 121
6 Commercial Availability 123
In-Memory Computing Using FLASH Memory 126
1 Potential Applications 126
2 Challenges 127
3 Commercial Availability 127
Reference 129
Index 129
Contents 7
Data-Centric Computing Paradigm Shift, and Domain-Specific Architecture and Hardware 8
1 Introduction 8
2 Data Centric, Computing Paradigm Shifts, Domain-Specific Designs 9
2.1 Latency 9
2.2 Security, and Privacy 10
2.3 Domain-Specific Architecture and Circuits 10
2.4 Low Quality Data 13
SRAM-Based In-Memory Computing: Circuits, Functions, and Applications 14
1 Introduction 14
2 Standard Memory Cell Design in SRAM 16
3 SRAM IMC/NMC Architectures and Designs 17
4 SRAM-IMC Based Search and Logic Operation 18
4.1 Search Operation 18
4.2 Boolean Logic AND, OR, NAND, NOR, XNOR, XOR, and IMC 23
5 Arithmetic Operations 27
5.1 Addition 27
5.2 Multiplication 29
5.3 SRAM Based Multiply-Accumulate Arithmetic Implementations 31
6 Potential Applications 34
6.1 CNNs Applications 35
6.2 Encryption Algorithms Application 36
6.3 Application for Machine Learning (ML) and Classification Algorithms 37
6.4 SRAM-IMC for CAM and Hamming Distance Computation 37
Proposed SRAM-IMC for Hamming Distance Computation 39
7 Challenges 39
7.1 Readout Precision vs. Signal Margin 40
7.2 Limitations of 6T SRAM 40
7.3 Process Variation 40
7.4 Read Disturb 42
7.5 Cell and Array Area 42
7.6 Multi-Bit Input Schemes for MAC Operations 42
8 Commercial Availability 43
In and Near-Memory Computing Using DRAM 45
1 Introduction 45
2 DRAM Organization 46
3 DRAM Access 48
4 DRAM Computing Architecture 50
4.1 Row Copy 51
4.2 Bulk Initialization 52
4.3 Bitwise Operation 53
5 Potential Applications 55
5.1 Accelerators for Machine Learning Using DRAM 55
5.2 IMC Using DRAM for Security Applications 57
True Random Number Generator (TRNG) 57
Physical Unclonable Function (PUF) 58
6 Challenges 61
7 Commercial Availability 61
MRAM-Based In-Memory Computing 62
1 Introduction 62
1.1 Chapter Organization 63
2 Overview 63
2.1 CMOS Integration 64
2.2 Basic Characteristics and Comparisons to Other Technologies 66
Speed 66
Power 66
Density 66
Data Retention and Endurance 66
3 Physics of Magnetic Tunnel Junctions 67
3.1 Critical Current Density 67
3.2 Dynamic Modeling 68
3.3 TMR 69
4 Chip Demonstrations and Commercialization 69
5 MRAM for In-Memory Computing 71
5.1 Possibilities and Challenges 72
5.2 Digital IMC 73
General-Purpose IMC 73
IMC for AI Applications 75
5.3 Analog IMC 76
STT-MRAM Crossbar Architectures 76
Neuromorphic MRAM-Based Systems 77
6 Case Study: A Mixed-Signal SNN Accelerator Using an STT Crossbar 78
6.1 2MTJ-2T Cell 80
6.2 Mapping SNN to the STT Crossbar 82
Noise Modeling 83
In-Memory Computing Using Phase Change Memory 85
1 Introduction 85
2 Operating Principle 86
2.1 Write Operation 86
2.2 Read Operation 86
2.3 Multi-Level Operation 87
3 Properties of PCM Devices 88
4 Potential Applications 89
4.1 Compressed Sensing and Recovery 89
4.2 Mixed-Precision IMC 91
4.3 Convolutional Neural Network (CNN) Inference 92
4.4 Spiking Neural Network (SNN) with PCM Synapses 93
4.5 Hyper-Dimensional Computing (HDC) 93
4.6 Similarity Search in Genomic Read Mapping 94
4.7 Case Study: PCM-Based IMC Array with Time-Domain Circuit for DNA Read Mapping 95
5 Challenges 97
6 Commercial Availability 99
Memristor-Based In-Memory Computing 101
1 Introduction 101
2 Operating Principles 102
2.1 Memristor Basics 102
2.2 Memristor Models 103
2.3 Memristor Crossbar 104
3 RRAM IMC Architecture and Designs 105
3.1 RRAM-Based Vector-Matrix Multiplication 105
3.2 RRAM-Based In-Memory Logic 107
3.3 RRAM-Based Neural Network Architectures 108
3.4 RRAM-Based Spiking Neural Network Architectures 109
3.5 RRAM-Based Hyperdimensional Computing 110
3.6 RRAM-Based Image Processing 110
3.7 RRAM-Based Image Compression 111
3.8 RRAM-Based Image Enhancement 111
4 Challenges 112
4.1 Device Level 112
Conductance Tuning Scheme 112
State Disturbance 113
Resistance Ratio 113
Symmetry of the Device 113
Crossbar Nanowire Resistance 113
4.2 Peripheral Circuit Level 114
Sneak Path Currents 114
Write/Access Latency 114
Optimizing Peripheral Circuitry 114
RESET Operation Before Every Write 115
4.3 System Level 115
Map Matrix Values to Memristor Conductance 115
Negative Value Representation Using Memristor Conductance 116
Mapping Algorithms and Hardware Training Schemes 117
5 Case Study: Transformer Attention Acceleration on Memristor 117
5.1 Performance Assessment and Discussion 121
6 Commercial Availability 123
In-Memory Computing Using FLASH Memory 126
1 Potential Applications 126
2 Challenges 127
3 Commercial Availability 127
Reference 129
Index 129
备用描述
Keine Beschreibung vorhanden.
Erscheinungsdatum: 26.09.2023
Erscheinungsdatum: 26.09.2023
开源日期
2023-09-26
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
- 高速服务器(合作方提供) #1 (推荐)
- 高速服务器(合作方提供) #2 (推荐)
- 高速服务器(合作方提供) #3 (推荐)
- 高速服务器(合作方提供) #4 (推荐)
- 高速服务器(合作方提供) #5 (推荐)
- 高速服务器(合作方提供) #6 (推荐)
- 高速服务器(合作方提供) #7
- 高速服务器(合作方提供) #8
- 高速服务器(合作方提供) #9
- 高速服务器(合作方提供) #10
- 高速服务器(合作方提供) #11
- 高速服务器(合作方提供) #12
- 高速服务器(合作方提供) #13
- 高速服务器(合作方提供) #14
- 高速服务器(合作方提供) #15
- 高速服务器(合作方提供) #16
- 高速服务器(合作方提供) #17
- 高速服务器(合作方提供) #18
- 高速服务器(合作方提供) #19
- 高速服务器(合作方提供) #20
- 高速服务器(合作方提供) #21
- 高速服务器(合作方提供) #22
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #10 (稍快但需要排队)
- 低速服务器(合作方提供) #11 (稍快但需要排队)
- 低速服务器(合作方提供) #12 (稍快但需要排队)
- 低速服务器(合作方提供) #13 (稍快但需要排队)
- 低速服务器(合作方提供) #14 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #15 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #16 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #17 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #18 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.