Permanent Magnet Spherical Motors: Model And Field Based Approaches For Design, Sensing And Control (research On Intelligent Manufacturing) 🔍
Kun Bai, Kok-Meng Lee
Springer Nature Singapore, Research on Intelligent Manufacturing, Research on Intelligent Manufacturing, 1, 2018
英语 [en] · PDF · 9.0MB · 2018 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/scihub/upload/zlib · Save
描述
"This book introduces and illustrates modeling, sensing, and control methods for analyzing, designing, and developing spherical motors. It systematically presents models for establishing the relationships among the magnetic fields, position/orientation and force/torque, while also providing time-efficient solutions to assist researchers and engineers in studying and developing these motors. In order to take full advantage of spherical motors' compact structure in practical applications, sensing and control methods that utilize their magnetic fields and eliminate the need to install external sensors for feedback are proposed. Further, the book investigates for the first time spherical motors' force/torque manipulation capability, and proposes algorithms enabling the ball-joint-like end-effector for haptic use based on these motors' hybrid position/force actuation modes. While systematically presenting approaches to their design, sensing and control, the book also provides many examples illustrating the implementation issues readers may encounter."--Page 4 of cover
备用文件名
lgli/K:\!genesis\0day\spr\10.1007%2F978-981-10-7962-7.pdf
备用文件名
lgrsnf/K:\!genesis\0day\spr\10.1007%2F978-981-10-7962-7.pdf
备用文件名
nexusstc/Permanent Magnet Spherical Motors/eab5cafe99b83943de2baa4fa891b355.pdf
备用文件名
scihub/10.1007/978-981-10-7962-7.pdf
备用文件名
zlib/Computers/Computer Science/Kun Bai, Kok-Meng Lee/Permanent Magnet Spherical Motors_3578127.pdf
备选标题
460737_Print.indd
备选作者
Bai, Kun, Lee, Kok-Meng
备选作者
0002624
备用出版商
Springer ; Huazhong University of Science and Technology Press
备用出版商
Springer Science + Business Media Singapore Pte Ltd
备用版本
Research on intelligent manufacturing (Online), 1st ed. 2018, Singapore, 2018
备用版本
Research on Intelligent Manufacturing, 1st edition 2018, Singapore, 2018
备用版本
Research on intelligent manufacturing, Singapore, Wuhan, China, 2018
备用版本
Springer Nature, Singapore, 2018
备用版本
Singapore, Singapore
备用版本
Mar 27, 2018
元数据中的注释
sm68457465
元数据中的注释
producers:
Acrobat Distiller 10.0.0 (Windows)
Acrobat Distiller 10.0.0 (Windows)
元数据中的注释
{"container_title":"Research on Intelligent Manufacturing","edition":"1","isbns":["9789811079610","9789811079627","9811079617","9811079625"],"issns":["2523-3386","2523-3394"],"last_page":164,"publisher":"Springer","series":"Research on Intelligent Manufacturing"}
元数据中的注释
Source title: Permanent Magnet Spherical Motors: Model and Field Based Approaches for Design, Sensing and Control (Research on Intelligent Manufacturing)
备用描述
Preface 6
Contents 8
Nomenclature 11
1 Introduction 13
1.1 Background 13
1.2 The State of the Art 15
1.2.1 Magnetic Modeling and Analysis 18
1.2.2 Orientation Sensing 20
1.2.3 Control Methods 22
1.3 Book Outline 24
References 26
Modeling Methods 30
2 General Formulation of PMSMs 31
2.1 PMSM Electromagnetic System Modeling 31
2.1.1 Governing Equations of Electromagnetic Field 31
2.1.2 Boundary Conditions 34
2.1.3 Magnetic Flux Linkage and Energy 35
2.1.4 Magnetic Force/Torque 36
2.2 PMSM Rotor Dynamics 37
References 40
3 Distributed Multi-pole Models 41
3.1 Distributed Multi-pole Model for PMs 41
3.1.1 PM Field with DMP Model 42
3.1.2 Numerical Illustrative Examples 45
3.2 Distributed Multi-pole Model for EMs 53
3.2.1 Equivalent Magnetization of the ePM 55
3.2.2 Illustrations of Magnetic Field Computation 57
3.3 Dipole Force/Torque Model 57
3.3.1 Force and Torque on a Magnetic Dipole 57
3.3.2 Illustration of Magnetic Force Computation 59
3.4 Image Method with DMP Models 62
3.4.1 Image Method with Spherical Grounded Boundary 63
3.4.2 Illustrative Examples 66
3.4.3 Effects of Iron Boundary on the Torque 68
3.5 Illustrative Numerical Simulations for PMSM Design 72
3.5.1 Pole Pair Design 75
3.5.2 Static Loading Investigation 80
3.5.3 Weight-Compensating Regulator 81
Appendix 85
References 89
4 PMSM Force/Torque Model for Real-Time Control 91
4.1 Force/Torque Formulation 91
4.1.1 Magnetic Force/Torque Based on the Kernel Functions 92
4.1.2 Simplified Model: Axis-Symmetric EMs/PMs 95
4.1.3 Inverse Torque Model 96
4.2 Numerical Illustrations 96
4.2.1 Axis-Asymmetric EM/PMs 96
4.2.2 Axis-Symmetric EM/PM 100
4.3 Illustrative PMSM Torque Modelling 103
Sensing Methods 106
5 Field-Based Orientation Sensing 107
5.1 Coordinate Systems and Sensor Placement 107
5.2 Field Mapping and Segmentation 108
5.3 Artificial Neural Network Inverse Map 110
5.4 Experimental Investigation 111
5.4.1 2-DOF Concurrent Characterization 112
References 115
6 A Back-EMF Method for Multi-DOF Motion Detection 116
6.1 Back-EMF for Multi-DOF Motion Sensing 116
6.1.1 EMF Model in a Single EM-PM Pair 118
6.1.2 Back-EMF with Multiple EM-PM Pairs 119
6.2 Implementation of Back-EMF Method on a PMSM 121
6.2.1 Mechanical and Magnetic Structure of the PMSM 122
6.2.2 Numerical Solutions for the MFL Model 123
6.2.3 Experiment and Discussion 125
6.2.4 Parameter Estimation of the PMSM with Back-EMF Method 127
Appendix 129
References 129
Control Methods 130
7 Direct Field-Feedback Control 131
7.1 Traditional Orientation Control Method for Spherical Motors 131
7.1.1 PD Control Law and Stability Analysis 132
7.1.2 Comments on Implementation of Traditional Control Methods 133
7.2 Direct Field-Feedback Control 134
7.2.1 Determination of Bijective Domain 135
7.2.2 DFC Control Law and Control Parameter Determination 135
7.2.3 DFC with Multi-sensors 136
7.3 Numerical 1-DOF Illustrative Example 137
7.3.1 Sensor Design and Bijective Domain Identification 137
7.3.2 Field-Based Control Law 139
7.3.3 Numerical Illustrations of Multiple Bijective Domains 141
7.4 Experimental Investigation of DFC for 3-DOF PMSM 141
7.4.1 System Description 141
7.4.2 Sensor Design and Bijective Domains 144
7.4.3 Bijective Domain 145
7.4.4 TCV Computation Using Artificial Neural Network (ANN) 148
7.4.5 Experimental Investigation 148
Appendix 156
References 156
8 A Two-Mode PMSM for Haptic Applications 157
8.1 Description of the PMSM Haptic Device 157
8.1.1 Two-Mode Configuration Design for 6-DOF Manipulation 159
8.1.2 Numerical Model for Magnetic Field/Torque Computation 160
8.1.3 Field-Based TCV Estimation 161
8.2 Snap-Fit Simulation 162
8.2.1 Snap-Fit Performance Analyses 164
8.2.2 Snap-Fit Haptic Application 165
Appendix: PM/EM/Sensor Position Coordinates 169
References 170
Contents 8
Nomenclature 11
1 Introduction 13
1.1 Background 13
1.2 The State of the Art 15
1.2.1 Magnetic Modeling and Analysis 18
1.2.2 Orientation Sensing 20
1.2.3 Control Methods 22
1.3 Book Outline 24
References 26
Modeling Methods 30
2 General Formulation of PMSMs 31
2.1 PMSM Electromagnetic System Modeling 31
2.1.1 Governing Equations of Electromagnetic Field 31
2.1.2 Boundary Conditions 34
2.1.3 Magnetic Flux Linkage and Energy 35
2.1.4 Magnetic Force/Torque 36
2.2 PMSM Rotor Dynamics 37
References 40
3 Distributed Multi-pole Models 41
3.1 Distributed Multi-pole Model for PMs 41
3.1.1 PM Field with DMP Model 42
3.1.2 Numerical Illustrative Examples 45
3.2 Distributed Multi-pole Model for EMs 53
3.2.1 Equivalent Magnetization of the ePM 55
3.2.2 Illustrations of Magnetic Field Computation 57
3.3 Dipole Force/Torque Model 57
3.3.1 Force and Torque on a Magnetic Dipole 57
3.3.2 Illustration of Magnetic Force Computation 59
3.4 Image Method with DMP Models 62
3.4.1 Image Method with Spherical Grounded Boundary 63
3.4.2 Illustrative Examples 66
3.4.3 Effects of Iron Boundary on the Torque 68
3.5 Illustrative Numerical Simulations for PMSM Design 72
3.5.1 Pole Pair Design 75
3.5.2 Static Loading Investigation 80
3.5.3 Weight-Compensating Regulator 81
Appendix 85
References 89
4 PMSM Force/Torque Model for Real-Time Control 91
4.1 Force/Torque Formulation 91
4.1.1 Magnetic Force/Torque Based on the Kernel Functions 92
4.1.2 Simplified Model: Axis-Symmetric EMs/PMs 95
4.1.3 Inverse Torque Model 96
4.2 Numerical Illustrations 96
4.2.1 Axis-Asymmetric EM/PMs 96
4.2.2 Axis-Symmetric EM/PM 100
4.3 Illustrative PMSM Torque Modelling 103
Sensing Methods 106
5 Field-Based Orientation Sensing 107
5.1 Coordinate Systems and Sensor Placement 107
5.2 Field Mapping and Segmentation 108
5.3 Artificial Neural Network Inverse Map 110
5.4 Experimental Investigation 111
5.4.1 2-DOF Concurrent Characterization 112
References 115
6 A Back-EMF Method for Multi-DOF Motion Detection 116
6.1 Back-EMF for Multi-DOF Motion Sensing 116
6.1.1 EMF Model in a Single EM-PM Pair 118
6.1.2 Back-EMF with Multiple EM-PM Pairs 119
6.2 Implementation of Back-EMF Method on a PMSM 121
6.2.1 Mechanical and Magnetic Structure of the PMSM 122
6.2.2 Numerical Solutions for the MFL Model 123
6.2.3 Experiment and Discussion 125
6.2.4 Parameter Estimation of the PMSM with Back-EMF Method 127
Appendix 129
References 129
Control Methods 130
7 Direct Field-Feedback Control 131
7.1 Traditional Orientation Control Method for Spherical Motors 131
7.1.1 PD Control Law and Stability Analysis 132
7.1.2 Comments on Implementation of Traditional Control Methods 133
7.2 Direct Field-Feedback Control 134
7.2.1 Determination of Bijective Domain 135
7.2.2 DFC Control Law and Control Parameter Determination 135
7.2.3 DFC with Multi-sensors 136
7.3 Numerical 1-DOF Illustrative Example 137
7.3.1 Sensor Design and Bijective Domain Identification 137
7.3.2 Field-Based Control Law 139
7.3.3 Numerical Illustrations of Multiple Bijective Domains 141
7.4 Experimental Investigation of DFC for 3-DOF PMSM 141
7.4.1 System Description 141
7.4.2 Sensor Design and Bijective Domains 144
7.4.3 Bijective Domain 145
7.4.4 TCV Computation Using Artificial Neural Network (ANN) 148
7.4.5 Experimental Investigation 148
Appendix 156
References 156
8 A Two-Mode PMSM for Haptic Applications 157
8.1 Description of the PMSM Haptic Device 157
8.1.1 Two-Mode Configuration Design for 6-DOF Manipulation 159
8.1.2 Numerical Model for Magnetic Field/Torque Computation 160
8.1.3 Field-Based TCV Estimation 161
8.2 Snap-Fit Simulation 162
8.2.1 Snap-Fit Performance Analyses 164
8.2.2 Snap-Fit Haptic Application 165
Appendix: PM/EM/Sensor Position Coordinates 169
References 170
备用描述
Front Matter ....Pages i-xii
Introduction (Kun Bai, Kok-Meng Lee)....Pages 1-17
Front Matter ....Pages 19-19
General Formulation of PMSMs (Kun Bai, Kok-Meng Lee)....Pages 21-30
Distributed Multi-pole Models (Kun Bai, Kok-Meng Lee)....Pages 31-80
PMSM Force/Torque Model for Real-Time Control (Kun Bai, Kok-Meng Lee)....Pages 81-95
Front Matter ....Pages 97-97
Field-Based Orientation Sensing (Kun Bai, Kok-Meng Lee)....Pages 99-107
A Back-EMF Method for Multi-DOF Motion Detection (Kun Bai, Kok-Meng Lee)....Pages 109-122
Front Matter ....Pages 123-123
Direct Field-Feedback Control (Kun Bai, Kok-Meng Lee)....Pages 125-150
A Two-Mode PMSM for Haptic Applications (Kun Bai, Kok-Meng Lee)....Pages 151-164
Introduction (Kun Bai, Kok-Meng Lee)....Pages 1-17
Front Matter ....Pages 19-19
General Formulation of PMSMs (Kun Bai, Kok-Meng Lee)....Pages 21-30
Distributed Multi-pole Models (Kun Bai, Kok-Meng Lee)....Pages 31-80
PMSM Force/Torque Model for Real-Time Control (Kun Bai, Kok-Meng Lee)....Pages 81-95
Front Matter ....Pages 97-97
Field-Based Orientation Sensing (Kun Bai, Kok-Meng Lee)....Pages 99-107
A Back-EMF Method for Multi-DOF Motion Detection (Kun Bai, Kok-Meng Lee)....Pages 109-122
Front Matter ....Pages 123-123
Direct Field-Feedback Control (Kun Bai, Kok-Meng Lee)....Pages 125-150
A Two-Mode PMSM for Haptic Applications (Kun Bai, Kok-Meng Lee)....Pages 151-164
开源日期
2018-08-15
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
- 高速服务器(合作方提供) #1 (推荐)
- 高速服务器(合作方提供) #2 (推荐)
- 高速服务器(合作方提供) #3 (推荐)
- 高速服务器(合作方提供) #4 (推荐)
- 高速服务器(合作方提供) #5 (推荐)
- 高速服务器(合作方提供) #6 (推荐)
- 高速服务器(合作方提供) #7
- 高速服务器(合作方提供) #8
- 高速服务器(合作方提供) #9
- 高速服务器(合作方提供) #10
- 高速服务器(合作方提供) #11
- 高速服务器(合作方提供) #12
- 高速服务器(合作方提供) #13
- 高速服务器(合作方提供) #14
- 高速服务器(合作方提供) #15
- 高速服务器(合作方提供) #16
- 高速服务器(合作方提供) #17
- 高速服务器(合作方提供) #18
- 高速服务器(合作方提供) #19
- 高速服务器(合作方提供) #20
- 高速服务器(合作方提供) #21
- 高速服务器(合作方提供) #22
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #10 (稍快但需要排队)
- 低速服务器(合作方提供) #11 (稍快但需要排队)
- 低速服务器(合作方提供) #12 (稍快但需要排队)
- 低速服务器(合作方提供) #13 (稍快但需要排队)
- 低速服务器(合作方提供) #14 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #15 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #16 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #17 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #18 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.