upload/newsarch_ebooks/2022/06/27/extracted__Deep-Learning-Quick-Reference-optimizin.7z/Deep Learning Quick Reference.mobi
Deep Learning Quick Reference : Useful Hacks for Training and Optimizing Deep Neural Networks with TensorFlow and Keras 🔍
Michael Bernico
Packt Publishing - ebooks Account, Packt Publishing, Birmingham, 2018
英语 [en] · MOBI · 14.2MB · 2018 · 📘 非小说类图书 · 🚀/lgli/lgrs/upload · Save
描述
This book is a practical guide to applying deep neural networks including MLPs, CNNs, LSTMs, and more in Keras and TensorFlow. Packed with useful hacks to solve real-world challenges along with the supported math and theory around each topic, this book will be a quick reference for training and optimize your deep neural networks.
COM004000 - COMPUTERS / Intelligence (AI) and Semantics,COM018000 - COMPUTERS / Data Processing,COM037000 - COMPUTERS / Machine Theory
COM004000 - COMPUTERS / Intelligence (AI) and Semantics,COM018000 - COMPUTERS / Data Processing,COM037000 - COMPUTERS / Machine Theory
备用文件名
lgli/fKCS8xxoyyjUgGtsLhjfZS.azw
备用文件名
lgrsnf/fKCS8xxoyyjUgGtsLhjfZS.azw
备选标题
TensorFlow 1.x Deep Learning Cookbook : Take the Next Step in Implementing Various Common and Not-so-common Neural Networks with Tensorflow 1.x
备选标题
TensorFlow 1.x deep learning cookbook : over 90 unique recipes to solve artificial-intelligence driven problems with Python
备选标题
Deep Learning with Keras : Get to Grips with the Basics of Keras to Implement Fast and Efficient Deep-learning Models
备选标题
Библиотека Keras - инструмент глубокого обучения: реализация нейронных сетей с помощью библиотек Theano и TensorFlow
备选标题
Deep learning with Keras : implementing deep learning models and neural networks with the power of Python
备选标题
Deep learning with Keras : implement neural networks with Keras on Theano and TensorFlow
备选标题
TensorFlow 1. X Deep Learning Cookbook
备选作者
Антонио Джулли, Суджит Пал; пер. с англ. Слинкин А. А
备选作者
Gulli, Antonio, Kapoor, Amita
备选作者
Antonio Gulli; Amita Kapoor
备选作者
Gulli, Antonio, Pal, Sujit
备选作者
Antonio Gulli; Sujit Pal
备选作者
Джулли, Антонио
备选作者
Antonio Gullì
备选作者
Bernico, Mike
备选作者
Mike Bernico
备用出版商
Packt Publishing Limited
备用出版商
Packt; Packt Publishing
备用出版商
ДМК Пресс
备用版本
United Kingdom and Ireland, United Kingdom
备用版本
Place of publication not identified, 2018
备用版本
Packt Publishing, Birmingham, UK, 2017
备用版本
1st ed, Birmingham, 2018
备用版本
Birmingham, UK, 2018
备用版本
Москва, Russia, 2018
备用版本
Dec 12, 2017
备用版本
Mar 09, 2018
备用版本
2017-12-12
备用扩展名
azw
元数据中的注释
Предм. указ.: с. 290-293
Ориг.: Gulli, Antonio Deep learning with Keras 978-1-78712-842-2
Ориг.: Gulli, Antonio Deep learning with Keras 978-1-78712-842-2
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 010417613
=005 20201001120855.0
=008 200713s2018\\\\ru\\\\\\\\\\\\000\0\rus\d
=017 \\ $a 7014-20 $b RuMoRGB
=020 \\ $a 978-5-97060-573-8 $c 200 экз.
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=084 \\ $a З813.5-02,07 $2 rubbk
=084 \\ $a З973.236-018,07 $2 rubbk
=084 \\ $a З818.6,07 $2 rubbk
=100 1\ $a Джулли, Антонио
=245 00 $a Библиотека Keras - инструмент глубокого обучения : $b реализация нейронных сетей с помощью библиотек Theano и TensorFlow $c Антонио Джулли, Суджит Пал ; пер. с англ. Слинкин А. А.
=260 \\ $a Москва $b ДМК Пресс $c 2018
=300 \\ $a 293 с. $b ил. $c 22 см
=336 \\ $a Текст (визуальный)
=337 \\ $a непосредственный
=500 \\ $a Предм. указ.: с. 290-293
=534 \\ $p Ориг.: $a Gulli, Antonio $t Deep learning with Keras $z 978-1-78712-842-2
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Кибернетика -- Искусственный интеллект -- Системы искусственного интеллекта -- Проектирование -- Пособие для специалистов $2 rubbk
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Вычислительная техника -- Вычислительные машины электронные цифровые -- Машины для обучения -- Программирование -- Пособие для специалистов $2 rubbk
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Кибернетика -- Бионика -- Биоэлектрические модели. Нейронные сети -- Пособие для специалистов $2 rubbk
=700 1\ $a Пал, Суджит
=852 \\ $a РГБ $b FB $j 2 20-43/278 $x 90
=001 010417613
=005 20201001120855.0
=008 200713s2018\\\\ru\\\\\\\\\\\\000\0\rus\d
=017 \\ $a 7014-20 $b RuMoRGB
=020 \\ $a 978-5-97060-573-8 $c 200 экз.
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=084 \\ $a З813.5-02,07 $2 rubbk
=084 \\ $a З973.236-018,07 $2 rubbk
=084 \\ $a З818.6,07 $2 rubbk
=100 1\ $a Джулли, Антонио
=245 00 $a Библиотека Keras - инструмент глубокого обучения : $b реализация нейронных сетей с помощью библиотек Theano и TensorFlow $c Антонио Джулли, Суджит Пал ; пер. с англ. Слинкин А. А.
=260 \\ $a Москва $b ДМК Пресс $c 2018
=300 \\ $a 293 с. $b ил. $c 22 см
=336 \\ $a Текст (визуальный)
=337 \\ $a непосредственный
=500 \\ $a Предм. указ.: с. 290-293
=534 \\ $p Ориг.: $a Gulli, Antonio $t Deep learning with Keras $z 978-1-78712-842-2
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Кибернетика -- Искусственный интеллект -- Системы искусственного интеллекта -- Проектирование -- Пособие для специалистов $2 rubbk
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Вычислительная техника -- Вычислительные машины электронные цифровые -- Машины для обучения -- Программирование -- Пособие для специалистов $2 rubbk
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Кибернетика -- Бионика -- Биоэлектрические модели. Нейронные сети -- Пособие для специалистов $2 rubbk
=700 1\ $a Пал, Суджит
=852 \\ $a РГБ $b FB $j 2 20-43/278 $x 90
备用描述
Take the next step in implementing various common and not-so-common neural networks with Tensorflow 1.xAbout This BookSkill up and implement tricky neural networks using Google's TensorFlow 1.xAn easy-to-follow guide that lets you explore reinforcement learning, GANs, autoencoders, multilayer perceptrons and more.Hands-on recipes to work with Tensorflow on desktop, mobile, and cloud environmentWho This Book Is ForThis book is intended for data analysts, data scientists, machine learning practitioners and deep learning enthusiasts who want to perform deep learning tasks on a regular basis and are looking for a handy guide they can refer to. People who are slightly familiar with neural networks, and now want to gain expertise in working with different types of neural networks and datasets, will find this book quite useful.What You Will LearnInstall TensorFlow and use it for CPU and GPU operationsImplement DNNs and apply them to solve different AI-driven problems.Leverage different data sets such as MNIST, CIFAR-10, and Youtube8m with TensorFlow and learn how to access and use them in your code.Use TensorBoard to understand neural network architectures, optimize the learning process, and peek inside the neural network black box.Use different regression techniques for prediction and classification problemsBuild single and multilayer perceptrons in TensorFlowImplement CNN and RNN in TensorFlow, and use it to solve real-world use cases.Learn how restricted Boltzmann Machines can be used to recommend movies.Understand the implementation of Autoencoders and deep belief networks, and use them for emotion detection.Master the different reinforcement learning methods to implement game playing agents.GANs and their implementation using TensorFlow.In DetailDeep neural networks (DNNs) have achieved a lot of success in the field of computer vision, speech recognition, and natural language processing. The entire world is filled with excitement about how deep networks are revolutionizing artificial intelligence. This exciting recipe-based guide will take you from the realm of DNN theory to implementing them practically to solve the real-life problems in artificial intelligence domain.In this book, you will learn how to efficiently use TensorFlow, Google's open source framework for deep learning. You will implement different deep learning networks such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Deep Q-learning Networks (DQNs), and Generative Adversarial Networks (GANs) with easy to follow independent recipes. You will learn how to make Keras as backend with TensorFlow.With a problem-solution approach, you will understand how to implement different deep neural architectures to carry out complex tasks at work. You will learn the performance of different DNNs on some popularly used data sets such as MNIST, CIFAR-10, Youtube8m, and more. You will not only learn about the different mobile and embedded platforms supported by TensorFlow but also how to set up cloud platforms for deep learning applications. Get a sneak peek of TPU architecture and how they will affect DNN future.By using crisp, no-nonsense recipes, you will become an expert in implementing deep learning techniques in growing real-world applications and research areas such as reinforcement learning, GANs, autoencoders and more.Style and approachThis book consists of hands-on recipes where you'll deal with real-world problems.You'll execute a series of tasks as you walk through data mining challenges using TensorFlow 1.x.Your one-stop solution for common and not-so-common pain points, this is a book that you must have on the shelf.
备用描述
Dive deeper into neural networks and get your models trained, optimized with this quick reference guideKey Features[•]A quick reference to all important deep learning concepts and their implementations[•]Essential tips, tricks, and hacks to train a variety of deep learning models such as CNNs, RNNs, LSTMs, and more[•]Supplemented with essential mathematics and theory, every chapter provides best practices and safe choices for training and fine-tuning your models in Keras and Tensorflow.Book DescriptionDeep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples. You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks. By the end of this book, you will be able to solve real-world problems quickly with deep neural networks.What you will learn[•] Solve regression and classification challenges with TensorFlow and Keras[•] Learn to use Tensor Board for monitoring neural networks and its training[•] Optimize hyperparameters and safe choices/best practices[•] Build CNN's, RNN's, and LSTM's and using word embedding from scratch[•] Build and train seq2seq models for machine translation and chat applications.[•] Understanding Deep Q networks and how to use one to solve an autonomous agent problem.[•] Explore Deep Q Network and address autonomous agent challenges.Who this book is forIf you are a Data Scientist or a Machine Learning expert, then this book is a very useful read in training your advanced machine learning and deep learning models. You can also refer this book if you are stuck in-between the neural network modeling and need immediate assistance in getting accomplishing the task smoothly. Some prior knowledge of Python and tight hold on the basics of machine learning is required.
备用描述
Take the next step in implementing various common and not-so-common neural networks with Tensorflow 1.x About This Book Skill up and implement tricky neural networks using Google's TensorFlow 1.x An easy-to-follow guide that lets you explore reinforcement learning, GANs, autoencoders, multilayer perceptrons and more. Hands-on recipes to work with Tensorflow on desktop, mobile, and cloud environment Who This Book Is For This book is intended for data analysts, data scientists, machine learning practitioners and deep learning enthusiasts who want to perform deep learning tasks on a regular basis and are looking for a handy guide they can refer to. People who are slightly familiar with neural networks, and now want to gain expertise in working with different types of neural networks and datasets, will find this book quite useful. What You Will Learn Install TensorFlow and use it for CPU and GPU operations Implement DNNs and apply them to solve different AI-driven problems. Leverage different data sets such as MNIST, CIFAR-10, and Youtube8m with TensorFlow and learn how to access and use them in your code. Use TensorBoard to understand neural network architectures, optimize the learning process, and peek inside the neural network black box. Use different regression techniques for prediction and classification problems Build single and multilayer perceptrons in TensorFlow Implement CNN and RNN in TensorFlow, and use it to solve real-world use cases. Learn how restricted Boltzmann Machines can be used to recommend movies. Understand the implementation of Autoencoders and deep belief networks, and use them for emotion detection. Master the different reinforcement learning methods to implement game playing agents. GANs and their implementation using TensorFlow. In Detail Deep neural networks (DNNs) have achieved a lot of success in the field of computer vision, speech recognition, and natural language processing. The entire world is filled with excitement about how deep networks are revolutionizing artificial intelligence. This exciting recipe-based guide will take you from the realm of DNN theory to implementing them practically to solve the real-life problems in artificial intelligence domain. In this book, you will learn how to efficiently use TensorFlow, Google's open source framework for deep learning. You will implement different deep learning networks such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Deep Q-learnin ..
备用描述
Dive deeper into neural networks and get your models trained, optimized with this quick reference guide About This Book A quick reference to all important deep learning concepts and their implementations Essential tips, tricks, and hacks to train a variety of deep learning models such as CNNs, RNNs, LSTMs, and more Supplemented with essential mathematics and theory, every chapter provides best practices and safe choices for training and fine-tuning your models in Keras and Tensorflow. Who This Book Is For If you are a Data Scientist or a Machine Learning expert, then this book is a very useful read in training your advanced machine learning and deep learning models. You can also refer this book if you are stuck in-between the neural network modeling and need immediate assistance in getting accomplishing the task smoothly. Some prior knowledge of Python and tight hold on the basics of machine learning is required. What You Will Learn Solve regression and classification challenges with TensorFlow and Keras Learn to use Tensor Board for monitoring neural networks and its training Optimize hyperparameters and safe choices/best practices Build CNN's, RNN's, and LSTM's and using word embedding from scratch Build and train seq2seq models for machine translation and chat applications. Understanding Deep Q networks and how to use one to solve an autonomous agent problem. Explore Deep Q Network and address autonomous agent challenges. In Detail Deep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples. You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best pr ..
备用描述
Get to grips with the basics of Keras to implement fast and efficient deep-learning models About This Book Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games See how various deep-learning models and practical use-cases can be implemented using Keras A practical, hands-on guide with real-world examples to give you a strong foundation in Keras Who This Book Is For If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. What You Will Learn Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm Fine-tune a neural network to improve the quality of results Use deep learning for image and audio processing Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases Identify problems for which Recurrent Neural Network (RNN) solutions are suitable Explore the process required to implement Autoencoders Evolve a deep neural network using reinforcement learning In Detail This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks. Style and approach This book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras. Downloading the example code for thi..
备用描述
"Deep learning has become an essential necessity to enter the world of artificial intelligence. With this book, deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples. You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later, the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks"--Page 4 of cover
开源日期
2024-12-16
ISBN-13978-1-78712-842-2
ISBN-13978-1-78712-903-0
ISBN-13978-1-78829-186-6
ISBN-13978-1-78829-359-4
ISBN-13978-1-78883-799-6
ISBN-13978-1-78883-891-7
ISBN-13978-5-9706-0573-8
ISBN-101-78712-842-3
ISBN-101-78712-903-9
ISBN-101-78829-186-7
ISBN-101-78829-359-2
ISBN-101-78883-799-1
ISBN-101-78883-891-2
ISBN-105-9706-0573-5
OCLC1016959190
OCLC1020275856
OCLC1020288466
OCLC1029492030
OCLC1030358679
OCLC1035810077
OCLC1050319448
OCLC1144179118
OCLC1286255201
OCLC987379595
OCLC987905014
AacIdaacid__ebscohost_records__20240823T164104Z__MbttGeVWhYHPjSHRfbKG5K
AacIdaacid__ebscohost_records__20240823T164112Z__YenJxw3x5KCEqX88xDsHgL
AacIdaacid__ebscohost_records__20240823T164113Z__jkc6skfEsTWvA27F6sJpqA
AacIdaacid__gbooks_records__20240920T051416Z__C7RF9bCWBUXm948X25LaYV
AacIdaacid__gbooks_records__20240920T051416Z__UgL4Xi57A2khp4SqBJNrTX
AacIdaacid__goodreads_records__20240913T115838Z__40374891__4X83MpBjKzTagZMMjeYG7k
AacIdaacid__isbngrp_records__20240920T194930Z__Gboj65ZkSqq5F6hzzAcM5P
AacIdaacid__rgb_records__20240919T161201Z__8Vbu2ZAevLRmggRXSo62KW
AacIdaacid__upload_files_newsarch_ebooks__20241215T171048Z__fKCS8xxoyyjUgGtsLhjfZS
AacIdaacid__upload_records_newsarch_ebooks__20241216T134300Z__2153252__TBUEmBQQYqqJoAdNGxSgki
AacIdaacid__worldcat__20250804T000000Z__2ZgS6P7tyAZKCJ9APHVUjA
AacIdaacid__worldcat__20250804T000000Z__2xwhebzwVvP3KmzWSUXHMB
AacIdaacid__worldcat__20250804T000000Z__4Fvg7WqE375zY95a9XScnn
AacIdaacid__worldcat__20250804T000000Z__4nshBSiGshiM4D8isiLa9a
AacIdaacid__worldcat__20250804T000000Z__6i9U58LynBYH45dLv35hDf
AacIdaacid__worldcat__20250804T000000Z__9EERPdXYkzqDDAASNyHfXP
AacIdaacid__worldcat__20250804T000000Z__AMSA5RLfafuwtpwRaNkC2r
AacIdaacid__worldcat__20250804T000000Z__FSCcG3MJZTAd52BKrrVK2s
AacIdaacid__worldcat__20250804T000000Z__G3x8wEKb8fXXyqg3pT8yzT
AacIdaacid__worldcat__20250804T000000Z__G5vQDNGdkvStRU6MmLpH9L
AacIdaacid__worldcat__20250804T000000Z__J8BnwBMqSTzmsYEpzfscGo
AacIdaacid__worldcat__20250804T000000Z__JNRw6ocyWaNVUeb3QoadFz
AacIdaacid__worldcat__20250804T000000Z__M7X9xE57XTkYUZyFKHsspU
AacIdaacid__worldcat__20250804T000000Z__Mmxs7znXpK28DjsS8cXRFJ
AacIdaacid__worldcat__20250804T000000Z__N7SXRE79iPasRYVD736zMy
AacIdaacid__worldcat__20250804T000000Z__NW6jGnFeY2sR3UQph98yDx
AacIdaacid__worldcat__20250804T000000Z__QyRNkFXexqqjc7QR8qaGLU
AacIdaacid__worldcat__20250804T000000Z__RSNHSWHjYTJTjZJPoTLhQR
AacIdaacid__worldcat__20250804T000000Z__RWg6G3wrT6WvGQgmZJYnqU
AacIdaacid__worldcat__20250804T000000Z__RcdUFsVxcMFuaYh67AzVPt
AacIdaacid__worldcat__20250804T000000Z__Rmsk276fGr7pbBR46AWcRs
AacIdaacid__worldcat__20250804T000000Z__SyKxZupEBKJ4xYtt894Ubt
AacIdaacid__worldcat__20250804T000000Z__TZuVBpa9SLH6n4SdMgab3F
AacIdaacid__worldcat__20250804T000000Z__UxemBiKPiWdX9ke6a6Ac9N
AacIdaacid__worldcat__20250804T000000Z__WVMrNNUCwVYn44owWcRP3Q
AacIdaacid__worldcat__20250804T000000Z__X6CrDqgqSBC5SSWVRAroZF
AacIdaacid__worldcat__20250804T000000Z__XKtRNJXN5MvggZ2uFWx7pR
AacIdaacid__worldcat__20250804T000000Z__XSKnaRk2gAogEYs4mLF7uf
AacIdaacid__worldcat__20250804T000000Z__YAFferC4xyz9tzHqBJ7srT
AacIdaacid__worldcat__20250804T000000Z__ZFZquc8ZURXjqQWQjF4JmE
AacIdaacid__worldcat__20250804T000000Z__ZpYrKTZJ7DoY7HBHttDyZf
AacIdaacid__worldcat__20250804T000000Z__cfgfWC4xLvJE3d2pnWqw62
AacIdaacid__worldcat__20250804T000000Z__ctnRDhELsFAcbfXrrMTEFU
AacIdaacid__worldcat__20250804T000000Z__echVG4FMYwKZcjLmb2gHJd
AacIdaacid__worldcat__20250804T000000Z__hwhisSEDhmynN3oWsbFtQy
AacIdaacid__worldcat__20250804T000000Z__iBzexjLhSKZSRfw793Dtbr
AacIdaacid__worldcat__20250804T000000Z__m4EwQvxYmJycXvCpobkiwf
AacIdaacid__worldcat__20250804T000000Z__mQwX4BvAudm4EsjzzdHsVZ
AA Record IDmd5:ead452026a2507a028fffee3df13b36e
Collectionlgli
Collectionlgrs
Collectionupload
Content Typebook_nonfiction
SHA-25696c6f2d8
EBSCOhost eBook Index Source Scrape Date2024-08-23
File Exiftool Created Date2021-05-14
Google Books Source Scrape Date2024-09-20
Goodreads Source Scrape Date2024-09-13
ISBNdb Scrape Date2022-09-01
ISBN GRP Source Scrape Date2024-09-20
Libgen.li Source Date2025-05-17
Libgen.rs Non-Fiction Date2025-04-24
OCLC Scrape Date2025-01-01
OpenLib 'created' Date2018-11-15
Russian State Library Source Scrape Date2024-09-19
Upload Collection File Date2024-12-15
Upload Collection Record Date2024-12-16
DDC005.133
DDC005.3
EBSCOhost eBook Index Accession Number1510480
EBSCOhost eBook Index Accession Number1661970
EBSCOhost eBook Index Accession Number1733802
EBSCOhost eBook Index Subjectbisac/COMPUTERS / Artificial Intelligence / General
EBSCOhost eBook Index Subjectbisac/COMPUTERS / Data Science / General
EBSCOhost eBook Index Subjectbisac/COMPUTERS / Data Science / Neural Networks
EBSCOhost eBook Index Subjectbisac/COMPUTERS / Machine Theory
EBSCOhost eBook Index Subjectunclass/Artificial intelligence
EBSCOhost eBook Index Subjectunclass/Machine learning
EBSCOhost eBook Index Subjectunclass/Neural networks (Computer science)
EBSCOhost eBook Index Subjectunclass/Open source software--Library applications
EBSCOhost eBook Index Subjectunclass/Python (Computer program language)
Filepathlgli/fKCS8xxoyyjUgGtsLhjfZS.azw
Filepathlgrsnf/fKCS8xxoyyjUgGtsLhjfZS.azw
Filepathupload/newsarch_ebooks/2022/06/27/extracted__Deep-Learning-Quick-Reference-optimizin.7z/Deep Learning Quick Reference.mobi
Filesize14154178
Google BooksH5lOswEACAAJ
Google Booksu_fVswEACAAJ
Goodreads40374891
IPFS CIDbafykbzacedvy2kx7tqbdhg4mqha33iofoycvjtvejh2glsfmvonfvcxkoqwl4
ISBN GRP ID453f8c3657d0994ed7dfc6f661abe3a1
Languageen
LCCQ325.5
LCCQA76.87
LCCQA76.87.G8 2017
LCCZ678.93.O65 .B476 2018eb
Libgen.li File108115051
Libgen.li libgen_id6535166
Libgen.rs Non-Fiction4509078
MD5ead452026a2507a028fffee3df13b36e
OCLC Editions1
OCLC Editions3
OCLC Editions (from search_holdings_summary_all_editions)1
OCLC Editions (from search_holdings_summary_all_editions)3
OCLC 'From Filename'2023_04_v3/1068/1068714248
OCLC 'From Filename'2023_04_v3/4247/424765464
OCLC 'From Filename'2023_04_v3/9336/93360480
OCLC 'From Filename'2023_05_v4_type123/1063/106326320
OCLC 'From Filename'2023_05_v4_type123/1132/113222717
OCLC 'From Filename'2023_05_v4_type123/1375/1375250898
OCLC 'From Filename'2023_05_v4_type123/2016/20164215
OCLC 'From Filename'2023_05_v4_type123/4842/48421978
OCLC 'From Filename'2023_05_v4_type123/9211/921193654
OCLC 'From Filename'2023_05_v4_type123/9546/954681529
OCLC 'From Filename'range_query/46843531##
OCLC 'From Filename'range_query/509385####
OCLC 'From Filename'range_query/509385####____2
OCLC 'From Filename'search_editions_response/1004102585
OCLC 'From Filename'search_editions_response/987379595
OCLC 'From Filename'search_holdings_all_editions_response/2025-08-23_07.tar/1035810077
OCLC 'From Filename'search_holdings_all_editions_response_type/1035810077
OCLC 'From Filename'search_holdings_summary_all_editions/1020275856/index/45399657
OCLC 'From Filename'search_holdings_summary_all_editions/1035810077/index/46582572
OCLC 'From Filename't123/1092/1092195693
OCLC 'From Filename'w2/v6/1079/1079553415
OCLC 'From Filename'w2/v7/1015/1015313421
OCLC 'From Filename'w2/v7/1206/1206412918
OCLC 'From Filename'w2/v7/1925/192583015
OCLC 'From Filename'w2/v7/2320/232021631
OCLC 'From Filename'w2/v7/2370/237039222
OCLC 'From Filename'w2/v7/3291/329126716
OCLC 'From Filename'w2/v7/3445/344524724
OCLC 'From Filename'w2/v7/4825/482582657
OCLC 'From Filename'w2/v7/5101/510138692
OCLC 'From Filename'w2/v7/8210/821090431
OCLC 'From Filename'w2/v7/9781/978113189
OCLC 'From Filename'w2/v7/9982/998227240
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v3/0838/83838340
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v3/1016/101651558
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v3/1016/101695919
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v3/1035/103509966
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v3/1051/105122346
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v5/1212/1212789700
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v5/1286/1286127940
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0017/0017996658
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0048/0048218322
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0054/0054644506
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0060/0060161521
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0063/0063429918
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0094/0094619146
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0383/0383225261
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0400/0400724686
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0402/0402117338
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0406/0406867523
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0440/0440374116
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0727/0727046325
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0825/0825077999
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0912/0912521037
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/0971/0971763637
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1115/1115556033
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1117/1117218296
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1128/1128863374
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1150/1150510003
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1174/1174776074
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1175/1175165756
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1192/1192953035
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1193/1193305125
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1233/1233425768
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1272/1272112283
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1272/1272896796
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1278/1278282111
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1278/1278743010
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1291/1291413620
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1292/1292390370
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1302/1302509933
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1317/1317117568
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1320/1320566967
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1320/1320818064
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1340/1340503035
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1342/1342933931
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1346/1346035404
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1349/1349946067
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1416/1416553127
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1498/1498428777
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1556/1556112224
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1745/1745969143
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1748/1748376711
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1839/1839251429
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/1970/1970442169
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2125/2125088525
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2130/2130777266
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2224/2224007398
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2266/2266431039
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2301/2301643231
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2417/2417976283
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2451/2451585606
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2498/2498114599
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2499/2499596371
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2532/2532922551
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2566/2566793670
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2571/2571282190
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2586/2586099600
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/2845/2845440452
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3012/3012894001
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3099/3099553753
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3318/3318857821
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3376/3376973263
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3504/3504918948
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3545/3545144068
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3570/3570780386
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3650/3650455727
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3711/3711169594
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3865/3865097411
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3916/3916437717
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/3943/3943400873
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4060/4060842042
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4079/4079599272
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4259/4259171049
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4440/4440139985
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4543/4543776329
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4582/4582777598
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4692/4692366418
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4703/4703779898
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4834/4834152174
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4881/4881832858
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4890/4890441099
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/4891/4891067647
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5094/5094791666
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5098/5098950131
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5191/5191233805
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5245/5245143401
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5260/5260419563
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5282/5282869819
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5298/5298804240
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5390/5390730225
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5412/5412306257
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5457/5457225781
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5498/5498967732
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5803/5803975441
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/5989/5989795372
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/6202/6202510421
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/6215/6215053854
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/6337/6337360107
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/6386/6386833531
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/6446/6446224857
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/6623/6623929615
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/6770/6770912386
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7033/7033647250
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7120/7120098854
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7146/7146789969
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7161/7161575850
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7219/7219648530
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7314/7314358562
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7328/7328429368
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7430/7430370225
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7604/7604393783
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7615/7615134989
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7618/7618630836
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7698/7698382654
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7965/7965502036
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7971/7971762273
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/7984/7984021087
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/8220/8220260317
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/8337/8337315282
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/8351/8351995510
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/8353/8353451375
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/8701/8701647681
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/8782/8782501451
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/8896/8896173494
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/8970/8970150852
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/9023/9023362376
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/9080/9080632309
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/9182/9182419415
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/9601/9601569431
OCLC 'From Filename'worldcat_2022_09_titles_1_backup_2022_10_12/v6/9617/9617178957
OCLC Holdings14
OCLC Holdings+Editions (to find rare books)14/1
OCLC Holdings+Editions+LibraryID (to find rare books)14/1/128470
OCLC Holdings+Editions+LibraryID (to find rare books)14/1/16409
OCLC Holdings+Editions+LibraryID (to find rare books)14/1/21616
OCLC Holdings+Editions+LibraryID (to find rare books)14/1/264381
OCLC Holdings+Editions+LibraryID (to find rare books)14/1/2708
OCLC Holdings+Editions+LibraryID (to find rare books)14/1/3022
OCLC Holdings+Editions+LibraryID (to find rare books)14/1/46533
OCLC Holdings+Editions+LibraryID (to find rare books)14/1/54156
OCLC Holdings+Editions+LibraryID (to find rare books)14/1/64076
OCLC Holdings+Editions+LibraryID (to find rare books)14/1/84801
OCLC Holdings (from library_ids)10
OCLC Holdings (from search_holdings_all_editions_response)13
OCLC Holdings (from search_holdings_summary_all_editions)14
OCLC ISBNs+Holdings+Editions (to find rare books)2/14/1
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books)2/14/1/128470
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books)2/14/1/16409
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books)2/14/1/21616
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books)2/14/1/264381
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books)2/14/1/2708
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books)2/14/1/3022
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books)2/14/1/46533
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books)2/14/1/54156
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books)2/14/1/64076
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books)2/14/1/84801
OCLC Library ID128470
OCLC Library ID16409
OCLC Library ID21616
OCLC Library ID264381
OCLC Library ID2708
OCLC Library ID3022
OCLC Library ID46533
OCLC Library ID54156
OCLC Library ID64076
OCLC Library ID84801
Open LibraryOL17953004W
Open LibraryOL19542381W
Open LibraryOL19542966W
Open LibraryOL26546226M
Open LibraryOL26833086M
Open LibraryOL26833665M
Open Library Source Recordamazon:1787128423
Open Library Source Recordamazon:1788293592
Open Library Source Recordamazon:1788837991
Open Library Source Recordbwb:9781787128422
Open Library Source Recordbwb:9781788293594
Open Library Source Recordbwb:9781788837996
Open Library Source Recordidb:9781787128422
Open Library Source Recordmarc_columbia/Columbia-extract-20221130-028.mrc:88275693:1930
Open Library Source Recordmarc_columbia/Columbia-extract-20221130-028.mrc:96235592:4635
Russian State Library ID010417613
Russian State Library SubjectБионика
Russian State Library SubjectБиоэлектрические модели. Нейронные сети
Russian State Library SubjectВычислительная техника
Russian State Library SubjectВычислительные машины электронные цифровые
Russian State Library SubjectИскусственный интеллект
Russian State Library SubjectКибернетика
Russian State Library SubjectМашины для обучения
Russian State Library SubjectПособие для специалистов
Russian State Library SubjectПрограммирование
Russian State Library SubjectПроектирование
Russian State Library SubjectРадиоэлектроника
Russian State Library SubjectСистемы искусственного интеллекта
Russian State Library SubjectТехника. Технические науки
Russian State Library SubjectЭнергетика. Радиоэлектроника
Server Pathg5/upload_files/upload_files_newsarch_ebooks_20241215/annas_archive_data__aacid__upload_files_newsarch_ebooks__20241215T171048Z--20241215T171049Z/aacid__upload_files_newsarch_ebooks__20241215T171048Z__fKCS8xxoyyjUgGtsLhjfZS
Server Pathga/lgrsnf/4509000/ead452026a2507a028fffee3df13b36e
SHA-10ac5a07ae05926933cdd17603156a17898e4152c
SHA-256c90b74a7d443569db42d8af9b84d21e9affd5e3aa8cb643c054f955114ea1f38
Torrentmanaged_by_aa/annas_archive_data__aacid/annas_archive_data__aacid__upload_files_newsarch_ebooks__20241215T171048Z--20241215T171049Z.torrent
Year2016
Year2017
Year2018
ISBN-13:
978-1-78712-842-2 / 9781787128422
ISBN-13:
978-1-78712-903-0 / 9781787129030
ISBN-13:
978-1-78829-186-6 / 9781788291866
ISBN-13:
978-1-78829-359-4 / 9781788293594
ISBN-13:
978-1-78883-799-6 / 9781788837996
ISBN-13:
978-1-78883-891-7 / 9781788838917
ISBN-13:
978-5-9706-0573-8 / 9785970605738
ISBN-10:
1-78712-842-3 / 1787128423
代码浏览器: 在代码浏览器中查看“isbn10:1787128423”
ISBN-10:
1-78712-903-9 / 1787129039
代码浏览器: 在代码浏览器中查看“isbn10:1787129039”
ISBN-10:
1-78829-186-7 / 1788291867
代码浏览器: 在代码浏览器中查看“isbn10:1788291867”
ISBN-10:
1-78829-359-2 / 1788293592
代码浏览器: 在代码浏览器中查看“isbn10:1788293592”
ISBN-10:
1-78883-799-1 / 1788837991
代码浏览器: 在代码浏览器中查看“isbn10:1788837991”
ISBN-10:
1-78883-891-2 / 1788838912
代码浏览器: 在代码浏览器中查看“isbn10:1788838912”
ISBN-10:
5-9706-0573-5 / 5970605735
代码浏览器: 在代码浏览器中查看“isbn10:5970605735”
AacId:
aacid__ebscohost_records__20240823T164104Z__MbttGeVWhYHPjSHRfbKG5K
Anna’s Archive Container identifier.
AacId:
aacid__ebscohost_records__20240823T164112Z__YenJxw3x5KCEqX88xDsHgL
Anna’s Archive Container identifier.
AacId:
aacid__ebscohost_records__20240823T164113Z__jkc6skfEsTWvA27F6sJpqA
Anna’s Archive Container identifier.
AacId:
aacid__gbooks_records__20240920T051416Z__C7RF9bCWBUXm948X25LaYV
Anna’s Archive Container identifier.
AacId:
aacid__gbooks_records__20240920T051416Z__UgL4Xi57A2khp4SqBJNrTX
Anna’s Archive Container identifier.
AacId:
aacid__goodreads_records__20240913T115838Z__40374891__4X83MpBjKzTagZMMjeYG7k
Anna’s Archive Container identifier.
AacId:
aacid__isbngrp_records__20240920T194930Z__Gboj65ZkSqq5F6hzzAcM5P
Anna’s Archive Container identifier.
AacId:
aacid__rgb_records__20240919T161201Z__8Vbu2ZAevLRmggRXSo62KW
Anna’s Archive Container identifier.
AacId:
aacid__upload_files_newsarch_ebooks__20241215T171048Z__fKCS8xxoyyjUgGtsLhjfZS
Anna’s Archive Container identifier.
AacId:
aacid__upload_records_newsarch_ebooks__20241216T134300Z__2153252__TBUEmBQQYqqJoAdNGxSgki
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__2ZgS6P7tyAZKCJ9APHVUjA
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__2xwhebzwVvP3KmzWSUXHMB
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__4Fvg7WqE375zY95a9XScnn
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__4nshBSiGshiM4D8isiLa9a
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__6i9U58LynBYH45dLv35hDf
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__9EERPdXYkzqDDAASNyHfXP
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__AMSA5RLfafuwtpwRaNkC2r
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__FSCcG3MJZTAd52BKrrVK2s
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__G3x8wEKb8fXXyqg3pT8yzT
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__G5vQDNGdkvStRU6MmLpH9L
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__J8BnwBMqSTzmsYEpzfscGo
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__JNRw6ocyWaNVUeb3QoadFz
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__M7X9xE57XTkYUZyFKHsspU
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__Mmxs7znXpK28DjsS8cXRFJ
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__N7SXRE79iPasRYVD736zMy
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__NW6jGnFeY2sR3UQph98yDx
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__QyRNkFXexqqjc7QR8qaGLU
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__RSNHSWHjYTJTjZJPoTLhQR
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__RWg6G3wrT6WvGQgmZJYnqU
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__RcdUFsVxcMFuaYh67AzVPt
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__Rmsk276fGr7pbBR46AWcRs
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__SyKxZupEBKJ4xYtt894Ubt
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__TZuVBpa9SLH6n4SdMgab3F
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__UxemBiKPiWdX9ke6a6Ac9N
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__WVMrNNUCwVYn44owWcRP3Q
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__X6CrDqgqSBC5SSWVRAroZF
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__XKtRNJXN5MvggZ2uFWx7pR
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__XSKnaRk2gAogEYs4mLF7uf
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__YAFferC4xyz9tzHqBJ7srT
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__ZFZquc8ZURXjqQWQjF4JmE
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__ZpYrKTZJ7DoY7HBHttDyZf
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__cfgfWC4xLvJE3d2pnWqw62
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__ctnRDhELsFAcbfXrrMTEFU
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__echVG4FMYwKZcjLmb2gHJd
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__hwhisSEDhmynN3oWsbFtQy
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__iBzexjLhSKZSRfw793Dtbr
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__m4EwQvxYmJycXvCpobkiwf
Anna’s Archive Container identifier.
AacId:
aacid__worldcat__20250804T000000Z__mQwX4BvAudm4EsjzzdHsVZ
Anna’s Archive Container identifier.
AA Record ID:
md5:ead452026a2507a028fffee3df13b36e
Anna’s Archive record ID.
Collection:
lgli
The collection on Anna’s Archive that provided data for this record.
URL: /datasets/lgli
网站: /datasets
代码浏览器: 在代码浏览器中查看“collection:lgli”
Collection:
lgrs
The collection on Anna’s Archive that provided data for this record.
URL: /datasets/lgrs
网站: /datasets
代码浏览器: 在代码浏览器中查看“collection:lgrs”
Collection:
upload
The collection on Anna’s Archive that provided data for this record.
URL: /datasets/upload
网站: /datasets
代码浏览器: 在代码浏览器中查看“collection:upload”
Content Type:
book_nonfiction
Content type, determined by Anna’s Archive.
SHA-256:
96c6f2d8
代码浏览器: 在代码浏览器中查看“crc32:96c6f2d8”
EBSCOhost eBook Index Source Scrape Date:
2024-08-23
Date Anna’s Archive scraped the EBSCOhost metadata.
网站: /datasets/edsebk
File Exiftool Created Date:
2021-05-14
Date of creation from the file’s own metadata.
网站: /datasets/upload
Google Books Source Scrape Date:
2024-09-20
Date Anna’s Archive scraped the Google Books collection.
网站: /datasets/gbooks
Goodreads Source Scrape Date:
2024-09-13
Date Anna’s Archive scraped the Goodreads collection.
ISBNdb Scrape Date:
2022-09-01
The date that Anna’s Archive scraped this ISBNdb record.
网站: /datasets/isbndb
ISBN GRP Source Scrape Date:
2024-09-20
Date Anna’s Archive scraped the ISBN GRP collection.
Libgen.rs Non-Fiction Date:
2025-04-24
Date Libgen.rs Non_Fiction published this file.
网站: /datasets/lgrs
OCLC Scrape Date:
2025-01-01
The date that Anna’s Archive scraped this OCLC/WorldCat record.
网站: /datasets/oclc
OpenLib 'created' Date:
2018-11-15
The 'created' metadata field on the Open Library, indicating when the first version of this record was created.
网站: /datasets/ol
Russian State Library Source Scrape Date:
2024-09-19
Date Anna’s Archive scraped the Russian State Library collection.
网站: /datasets/rgb
Upload Collection File Date:
2024-12-15
Date Anna’s Archive included the file itself in our 'upload' collection.
网站: /datasets/upload
Upload Collection Record Date:
2024-12-16
Date Anna’s Archive indexed this file in our 'upload' collection.
网站: /datasets/upload
EBSCOhost eBook Index Accession Number:
1510480
ID in the EBSCOhost eBook Index (edsebk).
网站: /datasets/edsebk
代码浏览器: 在代码浏览器中查看“edsebk:1510480”
EBSCOhost eBook Index Accession Number:
1661970
ID in the EBSCOhost eBook Index (edsebk).
网站: /datasets/edsebk
代码浏览器: 在代码浏览器中查看“edsebk:1661970”
EBSCOhost eBook Index Accession Number:
1733802
ID in the EBSCOhost eBook Index (edsebk).
网站: /datasets/edsebk
代码浏览器: 在代码浏览器中查看“edsebk:1733802”
EBSCOhost eBook Index Subject:
bisac/COMPUTERS / Artificial Intelligence / General
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
bisac/COMPUTERS / Data Science / General
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
bisac/COMPUTERS / Data Science / Neural Networks
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
bisac/COMPUTERS / Machine Theory
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
unclass/Artificial intelligence
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
unclass/Machine learning
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
unclass/Neural networks (Computer science)
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
unclass/Open source software--Library applications
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
EBSCOhost eBook Index Subject:
unclass/Python (Computer program language)
Tag in EBSCOhost eBook Index.
网站: /datasets/edsebk
Filepath:
lgli/fKCS8xxoyyjUgGtsLhjfZS.azw
Browse collections using their original file paths (particularly 'upload' is interesting)
Filepath:
lgrsnf/fKCS8xxoyyjUgGtsLhjfZS.azw
Browse collections using their original file paths (particularly 'upload' is interesting)
Filepath:
upload/newsarch_ebooks/2022/06/27/extracted__Deep-Learning-Quick-Reference-optimizin.7z/Deep Learning Quick Reference.mobi
Browse collections using their original file paths (particularly 'upload' is interesting)
Filesize:
14154178
Filesize in bytes.
Google Books:
H5lOswEACAAJ
网站: /datasets/gbooks
Google Books:
u_fVswEACAAJ
网站: /datasets/gbooks
Goodreads:
40374891
Goodreads social cataloging site
IPFS CID:
bafykbzacedvy2kx7tqbdhg4mqha33iofoycvjtvejh2glsfmvonfvcxkoqwl4
Content Identifier (CID) of the InterPlanetary File System (IPFS).
ISBN GRP ID:
453f8c3657d0994ed7dfc6f661abe3a1
ISBN GRP ID.
LCC:
QA76.87.G8 2017
Library of Congress Classification
LCC:
Z678.93.O65 .B476 2018eb
Library of Congress Classification
Libgen.li File:
108115051
Global file ID in Libgen.li. Directly taken from the 'f_id' field in the 'files' table.
网站: /datasets/lgli
代码浏览器: 在代码浏览器中查看“lgli:108115051”
Libgen.li libgen_id:
6535166
Repository ID for the 'libgen' repository in Libgen.li. Directly taken from the 'libgen_id' field in the 'files' table. Corresponds to the 'thousands folder' torrents.
网站: /datasets/lgli
Libgen.rs Non-Fiction:
4509078
Repository ID for the non-fiction ('libgen') repository in Libgen.rs. Directly taken from the 'id' field in the 'updated' table. Corresponds to the 'thousands folder' torrents.
网站: /datasets/lgrs
代码浏览器: 在代码浏览器中查看“lgrsnf:4509078”
MD5:
ead452026a2507a028fffee3df13b36e
OCLC Editions:
1
Number of editions (unique OCLC IDs) reported by OCLC/WorldCat metadata. 'many' means 20 or more.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_editions:1”
OCLC Editions:
3
Number of editions (unique OCLC IDs) reported by OCLC/WorldCat metadata. 'many' means 20 or more.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_editions:3”
OCLC Editions (from search_holdings_summary_all_editions):
1
网站: /datasets/oclc
OCLC Editions (from search_holdings_summary_all_editions):
3
网站: /datasets/oclc
OCLC 'From Filename':
2023_04_v3/1068/1068714248
网站: /datasets/oclc
OCLC 'From Filename':
2023_04_v3/4247/424765464
网站: /datasets/oclc
OCLC 'From Filename':
2023_04_v3/9336/93360480
网站: /datasets/oclc
OCLC 'From Filename':
2023_05_v4_type123/1063/106326320
网站: /datasets/oclc
OCLC 'From Filename':
2023_05_v4_type123/1132/113222717
网站: /datasets/oclc
OCLC 'From Filename':
2023_05_v4_type123/1375/1375250898
网站: /datasets/oclc
OCLC 'From Filename':
2023_05_v4_type123/2016/20164215
网站: /datasets/oclc
OCLC 'From Filename':
2023_05_v4_type123/4842/48421978
网站: /datasets/oclc
OCLC 'From Filename':
2023_05_v4_type123/9211/921193654
网站: /datasets/oclc
OCLC 'From Filename':
2023_05_v4_type123/9546/954681529
网站: /datasets/oclc
OCLC 'From Filename':
range_query/46843531##
网站: /datasets/oclc
OCLC 'From Filename':
range_query/509385####
网站: /datasets/oclc
OCLC 'From Filename':
range_query/509385####____2
网站: /datasets/oclc
OCLC 'From Filename':
search_editions_response/1004102585
网站: /datasets/oclc
OCLC 'From Filename':
search_editions_response/987379595
网站: /datasets/oclc
OCLC 'From Filename':
search_holdings_all_editions_response/2025-08-23_07.tar/1035810077
网站: /datasets/oclc
OCLC 'From Filename':
search_holdings_all_editions_response_type/1035810077
网站: /datasets/oclc
OCLC 'From Filename':
search_holdings_summary_all_editions/1020275856/index/45399657
网站: /datasets/oclc
OCLC 'From Filename':
search_holdings_summary_all_editions/1035810077/index/46582572
网站: /datasets/oclc
OCLC 'From Filename':
t123/1092/1092195693
网站: /datasets/oclc
OCLC 'From Filename':
w2/v6/1079/1079553415
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/1015/1015313421
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/1206/1206412918
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/1925/192583015
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/2320/232021631
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/2370/237039222
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/3291/329126716
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/3445/344524724
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/4825/482582657
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/5101/510138692
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/8210/821090431
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/9781/978113189
网站: /datasets/oclc
OCLC 'From Filename':
w2/v7/9982/998227240
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v3/0838/83838340
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v3/1016/101651558
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v3/1016/101695919
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v3/1035/103509966
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v3/1051/105122346
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v5/1212/1212789700
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v5/1286/1286127940
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0017/0017996658
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0048/0048218322
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0054/0054644506
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0060/0060161521
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0063/0063429918
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0094/0094619146
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0383/0383225261
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0400/0400724686
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0402/0402117338
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0406/0406867523
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0440/0440374116
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0727/0727046325
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0825/0825077999
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0912/0912521037
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/0971/0971763637
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1115/1115556033
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1117/1117218296
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1128/1128863374
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1150/1150510003
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1174/1174776074
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1175/1175165756
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1192/1192953035
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1193/1193305125
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1233/1233425768
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1272/1272112283
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1272/1272896796
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1278/1278282111
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1278/1278743010
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1291/1291413620
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1292/1292390370
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1302/1302509933
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1317/1317117568
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1320/1320566967
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1320/1320818064
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1340/1340503035
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1342/1342933931
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1346/1346035404
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1349/1349946067
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1416/1416553127
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1498/1498428777
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1556/1556112224
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1745/1745969143
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1748/1748376711
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1839/1839251429
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/1970/1970442169
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2125/2125088525
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2130/2130777266
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2224/2224007398
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2266/2266431039
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2301/2301643231
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2417/2417976283
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2451/2451585606
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2498/2498114599
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2499/2499596371
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2532/2532922551
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2566/2566793670
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2571/2571282190
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2586/2586099600
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/2845/2845440452
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3012/3012894001
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3099/3099553753
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3318/3318857821
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3376/3376973263
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3504/3504918948
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3545/3545144068
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3570/3570780386
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3650/3650455727
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3711/3711169594
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3865/3865097411
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3916/3916437717
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/3943/3943400873
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4060/4060842042
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4079/4079599272
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4259/4259171049
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4440/4440139985
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4543/4543776329
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4582/4582777598
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4692/4692366418
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4703/4703779898
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4834/4834152174
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4881/4881832858
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4890/4890441099
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/4891/4891067647
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5094/5094791666
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5098/5098950131
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5191/5191233805
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5245/5245143401
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5260/5260419563
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5282/5282869819
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5298/5298804240
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5390/5390730225
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5412/5412306257
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5457/5457225781
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5498/5498967732
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5803/5803975441
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/5989/5989795372
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/6202/6202510421
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/6215/6215053854
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/6337/6337360107
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/6386/6386833531
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/6446/6446224857
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/6623/6623929615
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/6770/6770912386
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7033/7033647250
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7120/7120098854
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7146/7146789969
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7161/7161575850
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7219/7219648530
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7314/7314358562
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7328/7328429368
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7430/7430370225
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7604/7604393783
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7615/7615134989
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7618/7618630836
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7698/7698382654
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7965/7965502036
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7971/7971762273
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/7984/7984021087
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/8220/8220260317
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/8337/8337315282
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/8351/8351995510
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/8353/8353451375
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/8701/8701647681
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/8782/8782501451
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/8896/8896173494
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/8970/8970150852
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/9023/9023362376
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/9080/9080632309
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/9182/9182419415
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/9601/9601569431
网站: /datasets/oclc
OCLC 'From Filename':
worldcat_2022_09_titles_1_backup_2022_10_12/v6/9617/9617178957
网站: /datasets/oclc
OCLC Holdings:
14
Number of library holdings (for all editions) reported by OCLC/WorldCat metadata. 'many' means 20 or more.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_holdings:14”
OCLC Holdings+Editions (to find rare books):
14/1
<number of oclc_holdings>/<number of oclc_editions>. If both numbers are low (but not zero) this might be a rare book.
网站: /datasets/oclc
OCLC Holdings+Editions+LibraryID (to find rare books):
14/1/128470
网站: /datasets/oclc
OCLC Holdings+Editions+LibraryID (to find rare books):
14/1/16409
网站: /datasets/oclc
OCLC Holdings+Editions+LibraryID (to find rare books):
14/1/21616
网站: /datasets/oclc
OCLC Holdings+Editions+LibraryID (to find rare books):
14/1/264381
网站: /datasets/oclc
OCLC Holdings+Editions+LibraryID (to find rare books):
14/1/2708
网站: /datasets/oclc
OCLC Holdings+Editions+LibraryID (to find rare books):
14/1/3022
网站: /datasets/oclc
OCLC Holdings+Editions+LibraryID (to find rare books):
14/1/46533
网站: /datasets/oclc
OCLC Holdings+Editions+LibraryID (to find rare books):
14/1/54156
网站: /datasets/oclc
OCLC Holdings+Editions+LibraryID (to find rare books):
14/1/64076
网站: /datasets/oclc
OCLC Holdings+Editions+LibraryID (to find rare books):
14/1/84801
网站: /datasets/oclc
OCLC Holdings (from library_ids):
10
网站: /datasets/oclc
OCLC Holdings (from search_holdings_all_editions_response):
13
网站: /datasets/oclc
OCLC Holdings (from search_holdings_summary_all_editions):
14
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions (to find rare books):
2/14/1
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books):
2/14/1/128470
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books):
2/14/1/16409
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books):
2/14/1/21616
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books):
2/14/1/264381
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books):
2/14/1/2708
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books):
2/14/1/3022
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books):
2/14/1/46533
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books):
2/14/1/54156
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books):
2/14/1/64076
网站: /datasets/oclc
OCLC ISBNs+Holdings+Editions+LibraryID (to find rare books):
2/14/1/84801
网站: /datasets/oclc
OCLC Library ID:
128470
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
16409
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
21616
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
264381
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
2708
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_library:2708”
OCLC Library ID:
3022
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
代码浏览器: 在代码浏览器中查看“oclc_library:3022”
OCLC Library ID:
46533
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
54156
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
64076
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
OCLC Library ID:
84801
OCLC/WorldCat partner library, from which they ingest metadata. Only added for records with less than 10 total holdings.
网站: /datasets/oclc
Open Library:
OL17953004W
代码浏览器: 在代码浏览器中查看“ol:OL17953004W”
Open Library:
OL19542381W
代码浏览器: 在代码浏览器中查看“ol:OL19542381W”
Open Library:
OL19542966W
代码浏览器: 在代码浏览器中查看“ol:OL19542966W”
Open Library:
OL26546226M
代码浏览器: 在代码浏览器中查看“ol:OL26546226M”
Open Library:
OL26833086M
代码浏览器: 在代码浏览器中查看“ol:OL26833086M”
Open Library:
OL26833665M
代码浏览器: 在代码浏览器中查看“ol:OL26833665M”
Open Library Source Record:
amazon:1787128423
The code for a source record that Open Library imported from.
网站: /datasets/ol
Open Library Source Record:
amazon:1788293592
The code for a source record that Open Library imported from.
网站: /datasets/ol
Open Library Source Record:
amazon:1788837991
The code for a source record that Open Library imported from.
网站: /datasets/ol
Open Library Source Record:
bwb:9781787128422
The code for a source record that Open Library imported from.
网站: /datasets/ol
Open Library Source Record:
bwb:9781788293594
The code for a source record that Open Library imported from.
网站: /datasets/ol
Open Library Source Record:
bwb:9781788837996
The code for a source record that Open Library imported from.
网站: /datasets/ol
Open Library Source Record:
idb:9781787128422
The code for a source record that Open Library imported from.
网站: /datasets/ol
Open Library Source Record:
marc_columbia/Columbia-extract-20221130-028.mrc:88275693:1930
The code for a source record that Open Library imported from.
URL: https://openlibrary.org/show-records/marc_columbia/Columbia-extract-20221130-028.mrc:88275693:1930
网站: /datasets/ol
Open Library Source Record:
marc_columbia/Columbia-extract-20221130-028.mrc:96235592:4635
The code for a source record that Open Library imported from.
URL: https://openlibrary.org/show-records/marc_columbia/Columbia-extract-20221130-028.mrc:96235592:4635
网站: /datasets/ol
Russian State Library ID:
010417613
Russian State Library ID.
URL: /rgb/010417613
网站: /datasets/rgb
代码浏览器: 在代码浏览器中查看“rgb:010417613”
Russian State Library Subject:
Биоэлектрические модели. Нейронные сети
Tag in Russian State Library.
网站: /datasets/rgb
Russian State Library Subject:
Вычислительная техника
Tag in Russian State Library.
网站: /datasets/rgb
Russian State Library Subject:
Вычислительные машины электронные цифровые
Tag in Russian State Library.
网站: /datasets/rgb
Russian State Library Subject:
Искусственный интеллект
Tag in Russian State Library.
网站: /datasets/rgb
Russian State Library Subject:
Пособие для специалистов
Tag in Russian State Library.
网站: /datasets/rgb
Russian State Library Subject:
Системы искусственного интеллекта
Tag in Russian State Library.
网站: /datasets/rgb
Russian State Library Subject:
Техника. Технические науки
Tag in Russian State Library.
网站: /datasets/rgb
Russian State Library Subject:
Энергетика. Радиоэлектроника
Tag in Russian State Library.
网站: /datasets/rgb
Server Path:
g5/upload_files/upload_files_newsarch_ebooks_20241215/annas_archive_data__aacid__upload_files_newsarch_ebooks__20241215T171048Z--20241215T171049Z/aacid__upload_files_newsarch_ebooks__20241215T171048Z__fKCS8xxoyyjUgGtsLhjfZS
Path on Anna’s Archive partner servers.
Server Path:
ga/lgrsnf/4509000/ead452026a2507a028fffee3df13b36e
Path on Anna’s Archive partner servers.
SHA-1:
0ac5a07ae05926933cdd17603156a17898e4152c
SHA-256:
c90b74a7d443569db42d8af9b84d21e9affd5e3aa8cb643c054f955114ea1f38
Torrent:
managed_by_aa/annas_archive_data__aacid/annas_archive_data__aacid__upload_files_newsarch_ebooks__20241215T171048Z--20241215T171049Z.torrent
Bulk torrent for long-term preservation.
网站: /torrents
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
如果您在本月捐款,您将获得双倍的快速下载次数。
今日下载剩余 XXXXXX 次。感谢您成为会员!❤️
你已经用完了今日的高速下载次数。
你最近下载过此文件。链接在一段时间内仍然有效。
- 高速服务器(合作方提供) #1 (推荐)
- 高速服务器(合作方提供) #2 (推荐)
- 高速服务器(合作方提供) #3 (推荐)
- 高速服务器(合作方提供) #4 (推荐)
- 高速服务器(合作方提供) #5 (推荐)
- 高速服务器(合作方提供) #6 (推荐)
- 高速服务器(合作方提供) #7
- 高速服务器(合作方提供) #8
- 高速服务器(合作方提供) #9
- 高速服务器(合作方提供) #10
- 高速服务器(合作方提供) #11
- 高速服务器(合作方提供) #12
- 高速服务器(合作方提供) #13
- 高速服务器(合作方提供) #14
- 高速服务器(合作方提供) #15
- 高速服务器(合作方提供) #16
- 高速服务器(合作方提供) #17
- 高速服务器(合作方提供) #18
- 高速服务器(合作方提供) #19
- 高速服务器(合作方提供) #20
- 高速服务器(合作方提供) #21
- 高速服务器(合作方提供) #22
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #10 (稍快但需要排队)
- 低速服务器(合作方提供) #11 (稍快但需要排队)
- 低速服务器(合作方提供) #12 (稍快但需要排队)
- 低速服务器(合作方提供) #13 (稍快但需要排队)
- 低速服务器(合作方提供) #14 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #15 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #16 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #17 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #18 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
- Libgen.rs 非虚构文学板块
- Libgen.li (点击顶部的“GET”) 已知他们的广告包含恶意软件,因此请使用广告拦截器或不要点击广告
- IPFS
- 批量种子下载 (仅限专家) 馆藏 “upload” → 种子 “annas_archive_data__aacid__upload_files_newsarch_ebooks__20241215T171048Z--20241215T171049Z.torrent” → file “aacid__upload_files_newsarch_ebooks__20241215T171048Z__fKCS8xxoyyjUgGtsLhjfZS”
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.