Artificial Intelligence Basics : A Non-Technical Introduction 🔍
Tom Taulli
Apress : Imprint: Apress, 1st ed. 2019, Berkeley, CA, 2019
英语 [en] · PDF · 2.9MB · 2019 · 📘 非小说类图书 · 🚀/lgli/lgrs/nexusstc/scihub/upload/zlib · Save
描述
Artificial intelligence touches nearly every part of your day. While you may initially assume that technology such as smart speakers and digital assistants are the extent of it, AI has in fact rapidly become a general-purpose technology, reverberating across industries including transportation, healthcare, financial services, and many more. In our modern era, an understanding of AI and its possibilities for your organization is essential for growth and success.
**__Artificial Intelligence Basics__**has arrived to equip you with a fundamental, timely grasp of AI and its impact. Author Tom Taulli provides an engaging, non-technical introduction to important concepts such as machine learning, deep learning, natural language processing (NLP), robotics, and more. In addition to guiding you through real-world case studies and practical implementation steps, Taulli uses his expertise to expand on the bigger questions that surround AI. These include societal trends, ethics, and future impact AI will have on world governments, company structures, and daily life.
Google, Amazon, Facebook, and similar tech giants are far from the only organizations on which artificial intelligence has had—and will continue to have—an incredibly significant result. AI is the present and the future of your business as well as your home life. Strengthening your prowess on the subject will prove invaluable to your preparation for the future of tech, and **__Artificial Intelligence Basics__** is the indispensable guide that you’ve been seeking.
**What You Will Learn**
* Study the core principles for AI approaches such as machine learning, deep learning, and NLP (Natural Language Processing)
* Discover the best practices to successfully implement AI by examining case studies including Uber, Facebook, Waymo, UiPath, and Stitch Fix
* Understand how AI capabilities for robots can improve business
* Deploy chatbots and Robotic Processing Automation (RPA) to save costs and improve customer service
* Avoid costly gotchas
* Recognize ethical concerns and other risk factors of using artificial intelligence
* Examine the secular trends and how they may impact your business
**Who This Book Is For**
Readers without a technical background, such as managers, looking to understand AI to evaluate solutions.
**__Artificial Intelligence Basics__**has arrived to equip you with a fundamental, timely grasp of AI and its impact. Author Tom Taulli provides an engaging, non-technical introduction to important concepts such as machine learning, deep learning, natural language processing (NLP), robotics, and more. In addition to guiding you through real-world case studies and practical implementation steps, Taulli uses his expertise to expand on the bigger questions that surround AI. These include societal trends, ethics, and future impact AI will have on world governments, company structures, and daily life.
Google, Amazon, Facebook, and similar tech giants are far from the only organizations on which artificial intelligence has had—and will continue to have—an incredibly significant result. AI is the present and the future of your business as well as your home life. Strengthening your prowess on the subject will prove invaluable to your preparation for the future of tech, and **__Artificial Intelligence Basics__** is the indispensable guide that you’ve been seeking.
**What You Will Learn**
* Study the core principles for AI approaches such as machine learning, deep learning, and NLP (Natural Language Processing)
* Discover the best practices to successfully implement AI by examining case studies including Uber, Facebook, Waymo, UiPath, and Stitch Fix
* Understand how AI capabilities for robots can improve business
* Deploy chatbots and Robotic Processing Automation (RPA) to save costs and improve customer service
* Avoid costly gotchas
* Recognize ethical concerns and other risk factors of using artificial intelligence
* Examine the secular trends and how they may impact your business
**Who This Book Is For**
Readers without a technical background, such as managers, looking to understand AI to evaluate solutions.
备用文件名
nexusstc/Artificial Intelligence Basics. A Non-Technical Introduction/eb5b350f1ef782cf9d62c2d5fd5a7e8b.pdf
备用文件名
lgli/Taulli T., Artificial Intelligence Basics. A Non-Technical Introduction (Apress, 2019)(ISBN 9781484250273)(195s).pdf
备用文件名
lgrsnf/Taulli T., Artificial Intelligence Basics. A Non-Technical Introduction (Apress, 2019)(ISBN 9781484250273)(195s).pdf
备用文件名
scihub/10.1007/978-1-4842-5028-0.pdf
备用文件名
zlib/Computers/Computer Science/Tom Taulli/Artificial Intelligence Basics. A Non-Technical Introduction_5224431.pdf
备选标题
Основы искусственного интеллекта: нетехническое введение
备选作者
Том Таулли; перевод с английского Андрея Логунова
备选作者
Taulli, Tom
备选作者
Таулли, Том
备用出版商
Apress, Incorporated
备用出版商
БХВ-Петербург
备用版本
United States, United States of America
备用版本
Springer Nature, [California], 2019
备用版本
Berkeley (California), cop. 2019
备用版本
Санкт-Петербург, Russia, 2021
备用版本
1st ed., PS, 2019
备用版本
Aug 02, 2019
元数据中的注释
0
元数据中的注释
sm76495352
元数据中的注释
producers:
Adobe PDF Library 10.0.1
Adobe PDF Library 10.0.1
元数据中的注释
{"edition":"1","isbns":["1484250273","1484250281","9781484250273","9781484250280"],"last_page":195,"publisher":"Apress","source":"libgen_rs"}
元数据中的注释
Source title: Artificial Intelligence Basics: A Non-Technical Introduction
元数据中的注释
Предм. указ.: с. 284-288
Пер.: Taulli, Tom Artificial intelligence basics. A non-technical introduction Apress 978-1-4842-5027-3
Пер.: Taulli, Tom Artificial intelligence basics. A non-technical introduction Apress 978-1-4842-5027-3
元数据中的注释
РГБ
元数据中的注释
Russian State Library [rgb] MARC:
=001 010596768
=005 20210315121610.0
=008 210309s2021\\\\ru\\\\\\\\\\\\000\|\rus|d
=017 \\ $a КН-П-21-012867 $b RuMoRKP
=020 \\ $a 978-5-9775-6717-6 $c 1200 экз.
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=084 \\ $a З813,0 $2 rubbk
=100 1\ $a Таулли, Том
=245 00 $a Основы искусственного интеллекта : $b нетехническое введение $c Том Таулли ; перевод с английского Андрея Логунова
=260 \\ $a Санкт-Петербург $b БХВ-Петербург $c 2021
=300 \\ $a 288 с. $b ил., портр., табл. $c 21 см
=336 \\ $a Текст (визуальный)
=337 \\ $a непосредственный
=500 \\ $a Предм. указ.: с. 284-288
=534 \\ $p Пер.: $a Taulli, Tom $t Artificial intelligence basics. A non-technical introduction $c Apress $z 978-1-4842-5027-3
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Кибернетика -- Искусственный интеллект $2 rubbk
=653 \\ $a машинное обучение
=653 \\ $a естественные языки - обработка
=653 \\ $a робототехника
=852 \\ $a РГБ $b FB $j 2 21-15/324 $x 90
=852 \\ $a РГБ $b FB $j 2 21-15/33 $x 90
=001 010596768
=005 20210315121610.0
=008 210309s2021\\\\ru\\\\\\\\\\\\000\|\rus|d
=017 \\ $a КН-П-21-012867 $b RuMoRKP
=020 \\ $a 978-5-9775-6717-6 $c 1200 экз.
=040 \\ $a RuMoRGB $b rus $e rcr
=041 1\ $a rus $h eng
=044 \\ $a ru
=084 \\ $a З813,0 $2 rubbk
=100 1\ $a Таулли, Том
=245 00 $a Основы искусственного интеллекта : $b нетехническое введение $c Том Таулли ; перевод с английского Андрея Логунова
=260 \\ $a Санкт-Петербург $b БХВ-Петербург $c 2021
=300 \\ $a 288 с. $b ил., портр., табл. $c 21 см
=336 \\ $a Текст (визуальный)
=337 \\ $a непосредственный
=500 \\ $a Предм. указ.: с. 284-288
=534 \\ $p Пер.: $a Taulli, Tom $t Artificial intelligence basics. A non-technical introduction $c Apress $z 978-1-4842-5027-3
=650 \7 $a Техника. Технические науки -- Энергетика. Радиоэлектроника -- Радиоэлектроника -- Кибернетика -- Искусственный интеллект $2 rubbk
=653 \\ $a машинное обучение
=653 \\ $a естественные языки - обработка
=653 \\ $a робототехника
=852 \\ $a РГБ $b FB $j 2 21-15/324 $x 90
=852 \\ $a РГБ $b FB $j 2 21-15/33 $x 90
备用描述
Contents 4
About the Author 5
Foreword 6
Introduction 8
Chapter 1: AI Foundations 12
Alan Turing and the Turing Test 13
The Brain Is a...Machine? 16
Cybernetics 16
The Origin Story 17
Golden Age of AI 19
AI Winter 22
The Rise and Fall of Expert Systems 23
Neural Networks and Deep Learning 25
Technological Drivers of Modern AI 26
Structure of AI 27
Conclusion 28
Key Takeaways 28
Chapter 2: Data 29
Data Basics 30
Types of Data 31
Big Data 33
Volume 34
Variety 34
Velocity 34
Databases and Other Tools 35
Data Process 38
Step #1—Business Understanding 40
Step #2—Data Understanding 41
Step #3—Data Preparation 42
Ethics and Governance 45
How Much Data Do You Need for AI? 46
More Data Terms and Concepts 46
Conclusion 47
Key Takeaways 48
Chapter 3: Machine Learning 49
What Is Machine Learning? 51
Standard Deviation 52
The Normal Distribution 53
Bayes’ Theorem 53
Correlation 54
Feature Extraction 55
What Can You Do with Machine Learning? 56
The Machine Learning Process 58
Step #1—Data Order 59
Step #2—Choose a Model 59
Step #3—Train the Model 59
Step #4—Evaluate the Model 59
Step #5—Fine-Tune the Model 60
Applying Algorithms 60
Supervised Learning 60
Unsupervised Learning 62
Reinforcement Learning 63
Semi-supervised Learning 64
Common Types of Machine Learning Algorithms 64
Naïve Bayes Classifier (Supervised Learning/Classification) 65
K-Nearest Neighbor (Supervised Learning/Classification) 67
Linear Regression (Supervised Learning/Regression) 68
Decision Tree (Supervised Learning/Regression) 70
Ensemble Modelling (Supervised Learning/Regression) 71
K-Means Clustering (Unsupervised/Clustering) 72
Conclusion 75
Key Takeaways 76
Chapter 4: Deep Learning 78
Difference Between Deep Learning and Machine Learning 79
So What Is Deep Learning Then? 80
The Brain and Deep Learning 81
Artificial Neural Networks (ANNs) 82
Backpropagation 83
The Various Neural Networks 85
Recurrent Neural Network 85
Convolutional Neural Network (CNN) 86
Generative Adversarial Networks (GANs) 87
Deep Learning Applications 89
Use Case: Detecting Alzheimer’s Disease 89
Use Case: Energy 90
Use Case: Earthquakes 90
Use Case: Radiology 91
Deep Learning Hardware 92
When to Use Deep Learning? 93
Drawbacks with Deep Learning 95
Conclusion 98
Key Takeaways 98
Chapter 5: Robotic Process Automation (RPA) 100
What Is RPA? 102
Pros and Cons of RPA 103
What Can You Expect from RPA? 105
How to Implement RPA 106
Determine the Right Functions to Automate 106
Assess the Processes 107
Select the RPA Vendor and Deploy the Software 107
Set in Place a Team to Manage the RPA Platform 108
RPA and AI 109
RPA in the Real World 110
Conclusion 110
Key Takeaways 111
Chapter 6: Natural Language Processing (NLP) 112
The Challenges of NLP 114
Understanding How AI Translates Language 115
Step #1—Cleaning and Preprocessing 115
Tokenization 115
Stemming 117
Lemmatization 118
Step #2—Understanding and Generating Language 119
Voice Recognition 120
NLP in the Real World 121
Use Case: Improving Sales 121
Use Case: Fighting Depression 122
Use Case: Content Creation 123
Use Case: Body Language 124
Voice Commerce 125
Virtual Assistants 127
Chatbots 128
Future of NLP 132
Conclusion 132
Key Takeaways 133
Chapter 7: Physical Robots 134
What Is a Robot? 135
Industrial and Commercial Robots 137
Robots in the Real World 142
Use Case: Security 142
Use Case: Floor-Scrubbing Robots 143
Use Case: Online Pharmacy 143
Use Case: Robot Scientists 144
Humanoid and Consumer Robots 144
The Three Laws of Robotics 146
Cybersecurity and Robots 147
Programming Robots for AI 147
The Future of Robots 149
Conclusion 150
Key Takeaways 150
Chapter 8: Implementation of AI 152
Approaches to Implementing AI 153
The Steps for AI Implementation 155
Identify a Problem to Solve 156
Forming the Team 159
The Right Tools and Platforms 159
Python Language 160
AI Frameworks 161
Deploy and Monitor the AI System 165
Conclusion 167
Key Takeaways 167
Chapter 9: The Future of AI 169
Autonomous Cars 170
US vs. China 174
Technological Unemployment 175
The Weaponization of AI 177
Drug Discovery 178
Government 180
AGI (Artificial General Intelligence) 181
Social Good 182
Conclusion 183
Key Takeaways 183
Appendix: AI Resources 185
Publications and Blogs That Cover AI 185
Company AI Blogs 185
Twitter Feeds of Top AI Researchers 186
Open Source AI Tools and Platforms 186
Online Courses 186
Glossary 187
Index 193
About the Author 5
Foreword 6
Introduction 8
Chapter 1: AI Foundations 12
Alan Turing and the Turing Test 13
The Brain Is a...Machine? 16
Cybernetics 16
The Origin Story 17
Golden Age of AI 19
AI Winter 22
The Rise and Fall of Expert Systems 23
Neural Networks and Deep Learning 25
Technological Drivers of Modern AI 26
Structure of AI 27
Conclusion 28
Key Takeaways 28
Chapter 2: Data 29
Data Basics 30
Types of Data 31
Big Data 33
Volume 34
Variety 34
Velocity 34
Databases and Other Tools 35
Data Process 38
Step #1—Business Understanding 40
Step #2—Data Understanding 41
Step #3—Data Preparation 42
Ethics and Governance 45
How Much Data Do You Need for AI? 46
More Data Terms and Concepts 46
Conclusion 47
Key Takeaways 48
Chapter 3: Machine Learning 49
What Is Machine Learning? 51
Standard Deviation 52
The Normal Distribution 53
Bayes’ Theorem 53
Correlation 54
Feature Extraction 55
What Can You Do with Machine Learning? 56
The Machine Learning Process 58
Step #1—Data Order 59
Step #2—Choose a Model 59
Step #3—Train the Model 59
Step #4—Evaluate the Model 59
Step #5—Fine-Tune the Model 60
Applying Algorithms 60
Supervised Learning 60
Unsupervised Learning 62
Reinforcement Learning 63
Semi-supervised Learning 64
Common Types of Machine Learning Algorithms 64
Naïve Bayes Classifier (Supervised Learning/Classification) 65
K-Nearest Neighbor (Supervised Learning/Classification) 67
Linear Regression (Supervised Learning/Regression) 68
Decision Tree (Supervised Learning/Regression) 70
Ensemble Modelling (Supervised Learning/Regression) 71
K-Means Clustering (Unsupervised/Clustering) 72
Conclusion 75
Key Takeaways 76
Chapter 4: Deep Learning 78
Difference Between Deep Learning and Machine Learning 79
So What Is Deep Learning Then? 80
The Brain and Deep Learning 81
Artificial Neural Networks (ANNs) 82
Backpropagation 83
The Various Neural Networks 85
Recurrent Neural Network 85
Convolutional Neural Network (CNN) 86
Generative Adversarial Networks (GANs) 87
Deep Learning Applications 89
Use Case: Detecting Alzheimer’s Disease 89
Use Case: Energy 90
Use Case: Earthquakes 90
Use Case: Radiology 91
Deep Learning Hardware 92
When to Use Deep Learning? 93
Drawbacks with Deep Learning 95
Conclusion 98
Key Takeaways 98
Chapter 5: Robotic Process Automation (RPA) 100
What Is RPA? 102
Pros and Cons of RPA 103
What Can You Expect from RPA? 105
How to Implement RPA 106
Determine the Right Functions to Automate 106
Assess the Processes 107
Select the RPA Vendor and Deploy the Software 107
Set in Place a Team to Manage the RPA Platform 108
RPA and AI 109
RPA in the Real World 110
Conclusion 110
Key Takeaways 111
Chapter 6: Natural Language Processing (NLP) 112
The Challenges of NLP 114
Understanding How AI Translates Language 115
Step #1—Cleaning and Preprocessing 115
Tokenization 115
Stemming 117
Lemmatization 118
Step #2—Understanding and Generating Language 119
Voice Recognition 120
NLP in the Real World 121
Use Case: Improving Sales 121
Use Case: Fighting Depression 122
Use Case: Content Creation 123
Use Case: Body Language 124
Voice Commerce 125
Virtual Assistants 127
Chatbots 128
Future of NLP 132
Conclusion 132
Key Takeaways 133
Chapter 7: Physical Robots 134
What Is a Robot? 135
Industrial and Commercial Robots 137
Robots in the Real World 142
Use Case: Security 142
Use Case: Floor-Scrubbing Robots 143
Use Case: Online Pharmacy 143
Use Case: Robot Scientists 144
Humanoid and Consumer Robots 144
The Three Laws of Robotics 146
Cybersecurity and Robots 147
Programming Robots for AI 147
The Future of Robots 149
Conclusion 150
Key Takeaways 150
Chapter 8: Implementation of AI 152
Approaches to Implementing AI 153
The Steps for AI Implementation 155
Identify a Problem to Solve 156
Forming the Team 159
The Right Tools and Platforms 159
Python Language 160
AI Frameworks 161
Deploy and Monitor the AI System 165
Conclusion 167
Key Takeaways 167
Chapter 9: The Future of AI 169
Autonomous Cars 170
US vs. China 174
Technological Unemployment 175
The Weaponization of AI 177
Drug Discovery 178
Government 180
AGI (Artificial General Intelligence) 181
Social Good 182
Conclusion 183
Key Takeaways 183
Appendix: AI Resources 185
Publications and Blogs That Cover AI 185
Company AI Blogs 185
Twitter Feeds of Top AI Researchers 186
Open Source AI Tools and Platforms 186
Online Courses 186
Glossary 187
Index 193
备用描述
Artificial intelligence touches nearly every part of your day. While you may initially assume that technology such as smart speakers and digital assistants are the extent of it, AI has in fact rapidly become a general-purpose technology, reverberating across industries including transportation, healthcare, financial services, and many more. In our modern era, an understanding of AI and its possibilities for your organization is essential for growth and success.
Artificial Intelligence Basics has arrived to equip you with a fundamental, timely grasp of AI and its impact. Author Tom Taulli provides an engaging, non-technical introduction to important concepts such as machine learning, deep learning, natural language processing (NLP), robotics, and more. In addition to guiding you through real-world case studies and practical implementation steps, Taulli uses his expertise to expand on the bigger questions that surround AI. These include societal trends, ethics, and future impact AI will have on world governments, company structures, and daily life.
Google, Amazon, Facebook, and similar tech giants are far from the only organizations on which artificial intelligence has had—and will continue to have—an incredibly significant result. AI is the present and the future of your business as well as your home life. Strengthening your prowess on the subject will prove invaluable to your preparation for the future of tech, and Artificial Intelligence Basics is the indispensable guide that you've been seeking.
What You Will Learn
Study the core principles for AI approaches such as machine learning, deep learning, and NLP (Natural Language Processing) Discover the best practices to successfully implement AI by examining case studies including Uber, Facebook, Waymo, UiPath, and Stitch Fix Understand how AI capabilities for robots can improve business Deploy chatbots and Robotic Processing Automation (RPA) to save costs and improve customer service Avoid costly gotchas Recognize ethical concerns and other risk factors of using artificial intelligence Examine the secular trends and how they may impact your business
Who This Book Is For
Readers without a technical background, such as managers, looking to understand AI to evaluate solutions.
Artificial Intelligence Basics has arrived to equip you with a fundamental, timely grasp of AI and its impact. Author Tom Taulli provides an engaging, non-technical introduction to important concepts such as machine learning, deep learning, natural language processing (NLP), robotics, and more. In addition to guiding you through real-world case studies and practical implementation steps, Taulli uses his expertise to expand on the bigger questions that surround AI. These include societal trends, ethics, and future impact AI will have on world governments, company structures, and daily life.
Google, Amazon, Facebook, and similar tech giants are far from the only organizations on which artificial intelligence has had—and will continue to have—an incredibly significant result. AI is the present and the future of your business as well as your home life. Strengthening your prowess on the subject will prove invaluable to your preparation for the future of tech, and Artificial Intelligence Basics is the indispensable guide that you've been seeking.
What You Will Learn
Study the core principles for AI approaches such as machine learning, deep learning, and NLP (Natural Language Processing) Discover the best practices to successfully implement AI by examining case studies including Uber, Facebook, Waymo, UiPath, and Stitch Fix Understand how AI capabilities for robots can improve business Deploy chatbots and Robotic Processing Automation (RPA) to save costs and improve customer service Avoid costly gotchas Recognize ethical concerns and other risk factors of using artificial intelligence Examine the secular trends and how they may impact your business
Who This Book Is For
Readers without a technical background, such as managers, looking to understand AI to evaluate solutions.
备用描述
Front Matter ....Pages i-xii
AI Foundations (Tom Taulli)....Pages 1-17
Data (Tom Taulli)....Pages 19-38
Machine Learning (Tom Taulli)....Pages 39-67
Deep Learning (Tom Taulli)....Pages 69-90
Robotic Process Automation (RPA) (Tom Taulli)....Pages 91-102
Natural Language Processing (NLP) (Tom Taulli)....Pages 103-124
Physical Robots (Tom Taulli)....Pages 125-142
Implementation of AI (Tom Taulli)....Pages 143-159
The Future of AI (Tom Taulli)....Pages 161-176
Back Matter ....Pages 177-187
AI Foundations (Tom Taulli)....Pages 1-17
Data (Tom Taulli)....Pages 19-38
Machine Learning (Tom Taulli)....Pages 39-67
Deep Learning (Tom Taulli)....Pages 69-90
Robotic Process Automation (RPA) (Tom Taulli)....Pages 91-102
Natural Language Processing (NLP) (Tom Taulli)....Pages 103-124
Physical Robots (Tom Taulli)....Pages 125-142
Implementation of AI (Tom Taulli)....Pages 143-159
The Future of AI (Tom Taulli)....Pages 161-176
Back Matter ....Pages 177-187
开源日期
2019-08-02
🚀 快速下载
成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️
- 高速服务器(合作方提供) #1 (推荐)
- 高速服务器(合作方提供) #2 (推荐)
- 高速服务器(合作方提供) #3 (推荐)
- 高速服务器(合作方提供) #4 (推荐)
- 高速服务器(合作方提供) #5 (推荐)
- 高速服务器(合作方提供) #6 (推荐)
- 高速服务器(合作方提供) #7
- 高速服务器(合作方提供) #8
- 高速服务器(合作方提供) #9
- 高速服务器(合作方提供) #10
- 高速服务器(合作方提供) #11
- 高速服务器(合作方提供) #12
- 高速服务器(合作方提供) #13
- 高速服务器(合作方提供) #14
- 高速服务器(合作方提供) #15
- 高速服务器(合作方提供) #16
- 高速服务器(合作方提供) #17
- 高速服务器(合作方提供) #18
- 高速服务器(合作方提供) #19
- 高速服务器(合作方提供) #20
- 高速服务器(合作方提供) #21
- 高速服务器(合作方提供) #22
🐢 低速下载
由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)
- 低速服务器(合作方提供) #1 (稍快但需要排队)
- 低速服务器(合作方提供) #2 (稍快但需要排队)
- 低速服务器(合作方提供) #3 (稍快但需要排队)
- 低速服务器(合作方提供) #4 (稍快但需要排队)
- 低速服务器(合作方提供) #5 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #6 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #7 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #8 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #9 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #10 (稍快但需要排队)
- 低速服务器(合作方提供) #11 (稍快但需要排队)
- 低速服务器(合作方提供) #12 (稍快但需要排队)
- 低速服务器(合作方提供) #13 (稍快但需要排队)
- 低速服务器(合作方提供) #14 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #15 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #16 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #17 (无需排队,但可能非常慢)
- 低速服务器(合作方提供) #18 (无需排队,但可能非常慢)
- 下载后: 在我们的查看器中打开
所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
外部下载
-
对于大文件,我们建议使用下载管理器以防止中断。
推荐的下载管理器:JDownloader -
您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
推荐的电子书阅读器:Anna的档案在线查看器、ReadEra和Calibre -
使用在线工具进行格式转换。
推荐的转换工具:CloudConvert和PrintFriendly -
您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
推荐的工具:亚马逊的“发送到 Kindle”和djazz 的“发送到 Kobo/Kindle” -
支持作者和图书馆
✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。
下面的文字仅以英文继续。
总下载量:
“文件的MD5”是根据文件内容计算出的哈希值,并且基于该内容具有相当的唯一性。我们这里索引的所有影子图书馆都主要使用MD5来标识文件。
一个文件可能会出现在多个影子图书馆中。有关我们编译的各种数据集的信息,请参见数据集页面。
有关此文件的详细信息,请查看其JSON 文件。 Live/debug JSON version. Live/debug page.